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Introduction
Should a Single Sample of Counted Data be Considered Different From a

Benchmark Universe?

Introduction

Hypothesis-Testing
with Counted Data,
Part 1

The first task in inferential statistics is to make one or more
point estimates—that is, to make one or more statements about
how much there is of something we are interested in—includ-
ing especially the mean and the dispersion. (That work goes
under the label “estimation” and is discussed in chapter 13.)
Frequently the next step, after making such quantitative esti-
mation of the universe from which a sample has been drawn,
is to consider whether two or more samples are different from
each other, or whether the single sample is different from a
specified value; this work goes under the label “hypothesis
testing.” We ask: Did something happen? Or: Is there a differ-
ence between two universes? These are yes-no questions.

In other cases, the next step is to inquire into the reliability of
the estimates; this goes under the label “confidence intervals.”
(Some writers include assessing reliability under the rubric of
estimation, but I judge it better not to do so).

So: Having reviewed how to convert hypothesis-testing prob-
lems into statistically testable questions in Chapter 14, we now
must ask: How does one employ resampling methods to make
the statistical test? As is always the case when using resampling
techniques, there is no unique series of steps by which to pro-
ceed. The crucial criterion in assessing the model is whether it
accurately simulates the actual event. With hypothesis-testing
problems, any number of models may be correct. Generally
speaking, though, the model that makes fullest use of the quan-
titative information available from the data is the best model.

When attempting to deduce the characteristics of a universe
from sample data, or when asking whether a sample was
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drawn from a particular universe, a crucial issue is whether a
“one-tailed test” or a “two-tailed test” should be applied. That
is, in examining the results of our resampling experiment based
on the benchmark universe, do we examine both ends of the
frequency distribution, or just one? If there is strong reason to
believe a priori that the difference between the benchmark (null)
universe and the sample will be in a given direction—for ex-
ample if you hypothesize that the sample mean will be smaller
than the mean of the benchmark universe—you should then
employ a one-tailed test. If you do not have strong basis for such
a prediction, use the two-tailed test. As an example, when a sci-
entist tests a new medication, his/her hypothesis would be that
the number of patients who get well will be higher in the
treated group than in the control group. Thus, s/he applies
the one-tailed test.

Some language first:

Hypothesis: In inferential statistics, a statement or claim about
a universe that can be tested and that you wish to investigate.

Testing: The process of investigating the validity of a hypoth-
esis.

Benchmark (or null) hypothesis: A particular hypothesis cho-
sen for convenience when testing hypotheses in inferential sta-
tistics. For example, we could test the hypothesis that there is
no difference between a sample and a given universe, or between
two samples, or that a parameter is less than or greater than a
certain value. The benchmark universe refers to this hypoth-
esis. (The concept of the benchmark or null hypothesis was
discussed in Chapters 5 and 14.)

Now let us begin the actual statistical testing of various sorts
of hypotheses about samples and populations.
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Should a single sample of counted data be considered different from a
benchmark universe?

Example 15-1: Does Irradiation Affect the Sex Ratio in Fruit
Flies? (Where the Benchmark Universe Mean (in this case,
the Proportion) is Known, is the Mean (Proportion) of the
Population Affected by the Treatment?) (Program “Fruitfly”)

You think you have developed a technique for irradiating the
genes of fruit flies so that the sex ratio of the offspring will not
be half males and half females. In the first twenty cases you
treat, there are fourteen males and six females. Does this ex-
perimental result confirm that the irradiation does work?

First convert the scientific question—whether or not the treat-
ment affects the sex distribution—into a probability-statistical
question: Is the observed sample likely to have come from a
benchmark universe in which the sex ratio is one male to one
female? The benchmark (null) hypothesis, then, is that the
treatment makes no difference and the sample comes from the
one-male-to-one-female universe. Therefore, we investigate
how likely a one-to-one universe is to produce a distribution of four-
teen or more of just one sex.

A coin has a one-to-one (one out of two) chance of coming up
tails. Therefore, we might flip a coin in groups of twenty flips,
and count the number of heads in each twenty flips. Or we
can use a random number table. The following steps will pro-
duce a sound estimate:

Step 1. Let heads = male, tails = female.

Step 2. Flip twenty coins and count the number of males. If
14 or more males occur, record “yes.” Also, if 6 or fewer males
occur, record “yes” because this means we have gotten 14 or
more females. Otherwise, record “no.”

Step 3. Repeat step 2 perhaps 100 times.

Step 4. Calculate the proportion “yes” in the 100 trials. This
proportion estimates the probability that a fruit-fly popula-
tion with a propensity to produce 50 percent males will by
chance produce as many as 14 or as few as 6 males in a sample
of 20 flies.

Table 15-1 shows the results obtained in twenty-five trials of
twenty flips each. In two of the twenty-five trials (8 percent)
there were fourteen or more heads, which we call “males,” and
in one of the twenty-five trials (4 percent) there were only six
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heads, meaning there were fourteen tails (“females”). We can
therefore estimate that, even if the treatment does not affect
the sex and the births over a long period really are one to one,
three out of twenty-five times (12 percent) we would get four-
teen or more of one sex or the other. Therefore, finding four-
teen males out of twenty births is not overwhelming evidence
that the treatment has any effect, even though the result is sug-
gestive.

How accurate is the estimate? Seventy-five more trials were
made, and of the 100 trials ten contained fourteen or more
“males” (10 percent), and seven trials contained fourteen or
more “females” (7 percent), a total of 17 percent. So the first
twenty-five trials gave a fairly reliable indication. As a matter
of fact, analytically-based computation (not explained here)
shows that the probability of getting fourteen or more females
out of twenty births is .057 and, of course, the same for four-
teen or more males from a one-to-one universe, implying a to-
tal probability of .114 of getting fourteen or more males or fe-
males.

Table 15-1
Results From 25 Random Trials for “Fruitfly” Problem

Trial of # >=14 Trial of # >=14 Trial of # >=14
20 Coin of or 20 Coin of or 20 Coin of or

Flips Heads  <=6 Flips Heads <=6 Flips Heads <=6

1  11  no  10  10  no  19  13  no

2  12  no  11  10  no  20  10  no

3  8  no  12  10  no  21  11  no

4  12  no  13  9  no  22  14  yes

5  12  no  14  9  no  23  9  no

6  7  no  15  12  no  24  7  no

7  9  no  16  7  no  25  10  no

8  8  no  17  14  yes

9  6  yes  18  12  no

Now let us obtain larger and more accurate simulation samples
with the computer. The key step in the RESAMPLING STATS
program “Fruitfly” is to GENERATE 20 numbers with two
equally-likely outcomes: “1” to stand for a male, and “2” to
stand for a female. This simulates randomly choosing 20 fruit
flies on the benchmark assumption—the “null hypothesis”—
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that each fruit fly has an equal chance of being a male or fe-
male. Now we want to discover the chances of getting more
than 13 (i.e., 14 or more) males or more than 13 females under
these conditions. So we COUNT the number of males in each
random sample and then keep SCORE of this number for each
sample.

After one thousand samples have been drawn, we COUNT
how often there were more than 13 males and then count the
number of times there were fewer than 7 males (because if
there were fewer than 7 males there must have been more than
13 females). When we ADD the two results together we have
the probability that the results obtained from the sample of
irradiated fruit flies would be obtained from a random sample
of fruit flies.

REPEAT 1000
Do 1000 experiments

GENERATE 20 1,2 a
Generate randomly 20 “1’s” and “2’s,” put them in a.

COUNT a =1 b
Count the number of “1”s (males), put that result in b.

SCORE b z
Keep track of each trial result in z.

END
End one trial, go back and repeat until all 1000 trials are complete.

HISTOGRAM z
Produce a histogram of the trial results.

20 Fruitflies

# males
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In the histogram above, we see that in 16 percent of the trials,
the number of males was 14 or more, or 6 or fewer. Or instead
of reading the results from the histogram, we can calculate the
result by tacking on the following commands to the above pro-
gram:

COUNT z >=14 j
Determine the number of trials in which we had 14 or more males.

COUNT z <=6 k
Determine the number of trials in which we had 6 or fewer males.

ADD j k m
Add the two results together.

DIVIDE m 1000 mm
Convert to a proportion.

PRINT mm
Print the results.

Note: The file “fruitfly” on the Resampling Stats software disk
contains this set of commands.

Notice that the strength of the evidence for the effectiveness
of the radiation treatment depends upon the original question:
whether or not the treatment had any effect on the sex of the
fruit fly, which is a two-tailed question. If there were reason to
believe at the start that the treatment could increase only the
number of males, then we would focus our attention on the
result that in only two of our first twenty-five trials were four-
teen or more males. There would then be only a 2/25 = .08
probability of getting the observed results by chance if the treat-
ment really has no effect, rather than the weaker odds against
obtaining fourteen or more of either males or females.

Therefore, whether you decide to figure the odds of just four-
teen or more males (what is called a “one-tail test”) or the odds
for fourteen or more males plus fourteen or more females (a
“two-tail test”), depends upon your advance knowledge of the
subject. If you have no reason to believe that the treatment will
have an effect only in the direction of creating more males and
if you figure the odds for the one-tail test anyway, then you
will be kidding yourself. Theory comes to bear here. If you
have a strong hypothesis, deduced from a strong theory, that
there will be more males, then you should figure one-tail odds,
but if you have no such theory you should figure the weaker
two-tail odds.
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In the case of the next problem concerning calves, we shall
see that a one-tail test is appropriate because we have no in-
terest in producing more male calves. Before leaving this ex-
ample, let us review our intellectual strategy in handling the
problem. First we observe a result (14 males in 20 flies) which
differs from the proportion of the benchmark population (50
percent males). Because we have treated this sample with ir-
radiation and observed a result that differs from the untreated
benchmark-population’s mean, we speculate that the irradia-
tion caused the sample to differ from the untreated popula-
tion. We wish to check on whether this speculation is correct.

When asking whether this speculation is correct, we are im-
plicitly asking whether future irradiation would also produce
a proportion of males higher than 50 percent. That is, we are
implicitly asking whether irradiated flies would produce more
samples with male proportions as high as 14/20 than would
occur by chance in the absence of irradiation.

If samples as far away as 14/20 from the benchmark popula-
tion mean of 10/20 would occur frequently by chance, then
we would not be impressed with that experimental evidence
as proof that irradiation does affect the sex ratio. Hence we
set up a model that will tell us the frequency with which
samples of 14 or more males out of 20 births would be ob-
served by chance. Carrying out the resampling procedure tells
us that perhaps a tenth of the time such samples would be
observed by chance. That is not extremely frequent, but it is
not infrequent either. Hence we would probably conclude that
the evidence is provocative enough to justify further experi-
mentation, but not so strong that we should immediately be-
lieve in the truth of this speculation.

The logic of attaching meaning to the probabilistic outcome
of a test of a hypothesis is discussed in Chapter 16. There also
is more about the concept of the level of significance in Chap-
ter 16.

Because of the great importance of this sort of case, which
brings out the basic principles particularly clearly, let us con-
sider another example:

Example 15-2: Does the Bio-Engineer’s Treatment Increase
the Female Calf Rate? What is the probability that among
10 calves born, 9 or more will be female?

Let’s consider this question in the context of a set of queries
for performing statistical inference that will be discussed fur-
ther in Chapter 19.
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The question (From Hodges and Lehman): Female calves are
more valuable than males. A bio-engineer claims to be able to
cause more females to be born than the expected 50 percent
rate. He conducts his procedure, and nine females are born
out of the next 10 pregnancies among the treated cows. Should
you believe his claim? That is, what is the probability of a re-
sult this (or more) surprising occurring by chance if his proce-
dure has no effect? In this problem, we assume that on aver-
age 100 of 206 births are female, in contrast to the 50-50 bench-
mark universe in the previous problem.

What is the purpose of the work? Female calves are more valu-
able than male calves.

Statistical inference? Yes.

Confidence interval or Test of hypothesis? Test of hypothesis.

Will you state the costs and benefits of various outcomes, or
a loss function? Yes. One need only say that the benefits are
very large, and if the results are promising, it is worth gather-
ing more data to confirm results.

How many samples of data are part of the hypothesis test?
One.

What is the size of the first sample about which you wish to
make significance statements? Ten.

What comparison(s) to make? Compare the sample to the
benchmark universe.

What is the benchmark universe that embodies the null hy-
pothesis? 100/206 female.

Which symbols for the observed entities? Balls in urn, or num-
bers.

What values or ranges of values? “1-100” and “101-206.”

Finite or infinite universe? Infinite.

Which sample(s) do you wish to compare to which, or to the
null universe (and perhaps to the alternative universe)? Ten
calves.

What procedure to produce the sample entities? Sampling with
replacement.

Simple (single step) or complex (multiple “if” drawings)? Can
think of it either way.
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What to record as the outcome of each resample trial? The
proportion (or number) of females.

What is the criterion to be used in the test? The probability
that in a sample of ten calves, nine (or more) females would
be drawn by chance from the benchmark universe of 100/206
females.

“One tail” or “two tail” test? One tail, because the farmer is
only interested in females. Finding a large proportion of males
would not be of interest; it would not cause rejecting the null
hypothesis.

The actual computation of probability may be done in several
ways, as discussed earlier for four children and for ten cows.
Conventional methods are discussed for comparison in Chap-
ter 19. Here is the resampling solution in RESAMPLING
STATS:

REPEAT 15000

GENERATE 10 1,206 a

COUNT a BETWEEN 101 206 b

SCORE b z

END

HISTOGRAM z

COUNT z >=9 k

DIVIDE k 15000 kk

PRINT kk

10 Calves

# females
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Result: kk = 0.013867

We read from the result in vector kk in the “calves” program
that the probability of 9 or 10 females occurring by chance is a
bit more than one percent.

Example 15-3: A Public-Opinion Poll (Is the Proportion of a
Population Greater Than a Given Value?) (Program
“CABLEPOL”)

A municipal official wants to determine whether a majority of
the town’s residents are for or against the awarding of a
cable-television franchise, and he asks you to take a poll. You
judge that the telephone book is a fair representation of the
universe in which the politician was interested, and you there-
fore decided to interview by telephone. Of a sample of fifty
people who expressed opinions, thirty said “yes” they were
for the plan and twenty said “no,” they were against it. How
conclusively do the results show that the people in town want
cable television?

Now comes some necessary subtle thinking in the interpreta-
tion of what seems like a simple problem. Notice that our aim
in the analysis is to avoid the mistake of saying that the town
favors the plan when in fact it does not favor the plan. Our
chance of making this mistake is greatest when the voters are
evenly split, so we choose as the benchmark (null) hypothesis
that 50 percent of the town does not want the plan. This state-
ment really means that “50 percent or more do not want the
plan.” We could assess the probability of obtaining our result
from a population that is split (say) 52-48 against, but such a
probability would necessarily be even smaller, and we are pri-
marily interested in assessing the maximum probability of be-
ing wrong. If the maximum probability of error turns out to
be inconsequential, then we need not worry about less likely
errors.

This problem is very much like the one-group fruit fly-
irradiation problem in Example 15-1. The only difference is that
now we are comparing the observed sample against an arbi-
trary value of 50 percent (because that is the break-point in a
situation where the majority decides) whereas in the fruitfly
example we compared the observed sample against the nor-
mal population proportion (also 50 percent, because that is the
normal proportion of males). But it really does not matter why
we are comparing the observed sample to the figure of 50 per-
cent; the procedure is the same in both cases. (Please notice
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that there is nothing special about the 50 percent figure; the
same procedure would be followed for 20 percent or 85 per-
cent.)

In brief, we a) designate “1-5” as “no” in the random-number
table, “6-0” as “yes,” b) count the number of “yeses” and
“noes” in the first fifty numbers, c) repeat for perhaps a hun-
dred trials, then d) count the proportion of the trials in which
a 50-50 universe would produce thirty or more “yes” answers.

In operational steps, the procedure is as follows:

Step 1. “1-5” = no, “6-0” = yes.

Step 2. In 50 random numbers, count the “yeses,” and record
“false positive” if 30 or more “yeses.”

Step 3. Repeat step 2 perhaps 100 times.

Step 4. Calculate the proportion of experimental trials show-
ing “false positive.” This estimates the probability that as many
as 30 “yeses” would be observed by chance in a sample of 50
people if half (or more) are really against the plan.

In Table 15-2, we see the results of twenty trials; 4 of 20 times
(20 percent) 30 or more “yeses” were observed by chance. So
our “significance level” or “prob value” is 20 percent, which
is normally too high to feel confident that our poll results are
reliable. This is the probability that as many as thirty of fifty
people would say “yes” by chance if the population were “re-
ally” split evenly. (If the population were split so that more than
50 percent were against the plan, the probability would be even
less that the observed results would occur by chance. In this
sense, the benchmark hypothesis is conservative). On the other
hand, if we had been counting “1-5” as “yes” instead of “no,”
there would only have been one “false positive.” This indi-
cates how samples can vary just by chance.
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Table 15-2
Results of Twenty Random Trials for Problem “Cablepol”

Trials With
Trial Number of “Noes” Number of “Yeses” >=30 “Yeses”

1 23 27

2 25 25

3 26 24

4 22 28

5 22 28

6 20 30 +

7 25 25

8 21 29

9 28 22

10 19 31 +

11 28 22

12 19 31 +

13 18 32 +

14 23 27

15 34 16

16 27 23

17 22 28

18 26 24

19 28 22

20 27 23

Taken together, the evidence suggests that the mayor would
be wise not to place very much confidence in the poll results,
but rather ought to act with caution or else take a larger sample
of voters.

The RESAMPLING STATS program “Cablepol” GENERATEs
samples of 50 simulated voters on the assumption that only
50 percent are in favor of the franchise. Then it COUNTs the
number of samples where over 29 (30 or more) of the 50 re-
spondents said they were in favor of the franchise. (That is,
we use a “one-tailed test.”) The result in KK is the chance of a
“false positive,” that is, 30 or more people saying they favor a
franchise when support for the proposal is actually split evenly
down the middle.

REPEAT 1000
Do 1000 trials.

GENERATE 50 1,2 a
Generate randomly 50 “1”s and “2”s, put them in a. Let “1” = “yes”
and “2” = “no.”
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COUNT a =1 b
Count the number of yeses, put the result in b.

SCORE b z
Keep track of each trial result in z.

END
End the trial, go back and repeat until all 1000 trials are complete, then
proceed.

HISTOGRAM z
Produce a histogram of the trial results.

In the histogram below, we see that 11 percent of our trials
had 30 or more voters in favor, despite the fact that they were
drawn from a population that was split 50-50. RESAMPLING
STATS will calculate this proportion directly if we add the fol-
lowing commands to the above:

COUNT z >= 30 k
Determine how many trials had 30 or more in favor.

DIVIDE k 1000 kk
Convert to a proportion.

PRINT kk
Print the result.

Note: The file “cablepol” on the Resampling Stats software disk
contains this set of commands.

Samples of 50 Voters

# voters in favor
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The section above discusses testing hypotheses about a single
sample of counted data relative to a benchmark universe. This
section discusses the issue of whether two samples with
counted data should be considered the same or different.

Example 15-4: Did the Bush-Dukakis Poll Indicate that Bush
Would Win?

What is the probability that a sample outcome such as actu-
ally observed (840 Bush, 660 Dukakis) would occur by chance
if Dukakis is “really” ahead—that is, if Dukakis has 50 per-
cent (or more) of the support? To restate in sharper statistical
language: What is the probability that the observed sample or
one even more favorable to Bush would occur if the universe
has a mean of 50 percent or below?

Here is a procedure that responds to that question:

1. Create a benchmark universe with one ball marked “B” and
another marked “D.”

2. Draw a ball, record its marking, and replace. (We sample
with replacement to simulate the practically-infinite popula-
tion of U. S. voters.)

3. Repeat step 2 1500 times and count the number of “B”s. If
840 or greater, record “Y”; otherwise, record “N.”

4. Repeat steps 3 and 4 perhaps 1000 or 10,000 times, and count
the number of “Y”s. The outcome estimates the probability that
840 or more Bush choices would occur if the universe is “re-
ally” half or more in favor of Dukakis.

This procedure may be done as follows with a computer and
Resampling Stats (program “bush-hyp”):

REPEAT 1000

GENERATE 1500 1,2 a
Generate 1500 “1’s” and “2’s,” selected randomly, letting “1” =
Bush

COUNT a =1 b
Count Bush votes

SCORE b z
Keep score

END

HISTOGRAM z
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COUNT z >=840 k
How often >= 840 Bush votes in random draw?

DIVIDE k 1000 kk
As a proportion of simulated resamples

PRINT kk

The result was kk = 0. This implies shows a probability so small
as not to occur once in a thousand times that Bush’s “victory”
in the sample would occur by chance if he really were behind.
The results of the various runs may be seen in the histogram
and printout following.

MAXSIZE a 1500
Enlarge vector a’s capacity to 1500 (default is 1000 in some versions of
Resampling Stats)

REPEAT 1000

GENERATE 1500 1,2 a
Generate 50 “1’s” and “2’s,” selected randomly, letting “1” = Bush

COUNT a =1 b
Count Bush votes

DIVIDE b 1500 c
Find proportion pro-Bush

SCORE b z
Keep score

END

HISTOGRAM z

COUNT z >=.56 k
How often >= .56 Bush votes in random draw?

DIVIDE k 1000 kk
As a proportion of simulated resamples

PRINT kk
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Samples of 1500 Voters

proportion voters for Bush

Bin Center Freq Pct Cum Pct

0.465 4 0.4 0.4

0.47 14 1.4 1.8

0.475 28 2.8 4.6

0.48 46 4.6 9.2

0.485 97 9.7 18.9

0.49 106 10.6 29.5

0.495 159 15.9 45.4

0.5 121 12.1 57.5

0.505 157 15.7 73.2

0.51 102 10.2 83.4

0.515 75 7.5 90.9

0.52 39 3.9 94.8

0.525 35 3.5 98.3

0.53 11 1.1 99.4

0.535 5 0.5 99.9

0.54 1 0.1 100

Example 15-5: Comparison of Possible Cancer Cure to
Placebo Effect (Do Two Binomial Populations Differ in Their
Proportions) (Program “CANCER”).

Example 15-1 used an observed sample of male and female
fruitflies to test the benchmark (null) hypothesis that the flies
came from a universe with a one-to-one sex ratio, and the poll
data problem also compared results to a 50-50 hypothesis. The
calves problem also compared the results to a single bench-
mark universe—a proportion of 100/206 females. Now we
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want to compare two samples with each other, rather than com-
paring one sample with a hypothesized universe. That is, in
this example we are not comparing one sample to a bench-
mark universe, but rather asking whether both samples come
from the same universe. The universe from which both samples
come, if both belong to the same universe, may be thought of
as the benchmark universe, in this case.

The scientific question is whether pill P cures a rare cancer. A
researcher gave pill P to six patients selected randomly from a
group of twelve cancer patients; of the six, five got well. He
gave an inactive placebo to the other six patients, and two of
them got well. Does the evidence justify a conclusion that the
pill has a curative effect?

(An identical statistical example would serve for an experi-
ment on methods of teaching reading to children. In such a
situation the researcher would respond to inconclusive results
by running the experiment on more subjects, but in cases like
the cancer-pill example the researcher often cannot obtain more
subjects.)

We can answer the stated question by combining the two
samples and testing both samples against the resulting com-
bined universe. In this case, the universe is twelve subjects,
seven (5 + 2) of whom got well. How likely would such a uni-
verse produce two samples as far apart as five of six, and two
of six, patients who get well? In other words, how often will
two samples of six subjects, each drawn from a universe in
which 7/12 of the patients get well, be as far apart as 5 – 2 = 3
patients in favor of the sample designated “pill”? This is ob-
viously a one-tail test, for there is no reason to believe that the
pill group might do less well than the placebo group.

We might construct a twelve-sided die, seven of whose sides
are marked “get well.” Or we would use pairs of numbers from
the random-number table, with numbers “01-07” correspond-
ing to get well, numbers “08-12” corresponding to “not get
well,” and all other numbers omitted. (If you wish to save time,
you can work out a system that uses more numbers and skips
fewer, but that is up to you.) Designate the first six subjects
“pill” and the next six subjects “placebo.”

The specific procedure might be as follows:

Step 1. “01-07” = get well, “08-12” = do not get well

Step 2. Select two groups, A and B, each with six random num-
bers from “01” to “12.”
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Step 3. Record how many “get well” in each group.

Step 4. Subtract the result in group A from that in group B
(the difference may be negative).

Step 5. Repeat steps 1-4 perhaps 100 times.

Step 6. Compute the proportion of trials in which the pill does
better by three or more cases. In the trials shown in Table 15-3,
in three cases (12 percent) the difference between the
randomly-drawn groups is three cases or greater. Apparently
it is somewhat unusual—it happens 12 percent of the time—for
this universe to generate “pill” samples in which the number
of recoveries exceeds the number in the “placebo” samples by
three or more. Therefore the answer to the scientific question,
based on these samples, is that there is some reason to think
that the medicine does have a favorable effect. But the investi-
gator might sensibly await more data before reaching a firm
conclusion about the pill’s efficiency, given the 7 to 1 odds (12
percent probability).

Table 15-3
Results of 25 Random Trials for Probability “Cancer”

Trial  Pill Cures  Placebo Cures  Difference

1 4 4 0
2 3 5 -2
3 4 3 1
4* 5 2 3
5 4 3 1
6 2 5 -3
7 4 4 0
8 4 5 -1
9 4 4 0
10* 5 2 3
11 4 5 -1
12 5 3 2
13 3 5 -2
14 3 2 1
15 3 4 -1
16 5 4 1
17* 6 3 3
18 4 5 -1
19 3 4 -1
20 2 3 -1
21 4 4 0
22 4 4 0
23 3 5 -2
24 3 3 0
25 3 3 0
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Now for a RESAMPLING STATS solution. Again, the bench-
mark hypothesis is that pill P has no effect, and we ask how
often, on this assumption, the results that were obtained from
the actual test of the pill would occur by chance.

Given that in the test 7 of 12 patients overall got well, the
benchmark hypothesis assumes 7/12 to be the chances of any
random patient being cured. We GENERATE two similar
samples of 6 patients, both taken from the same universe com-
posed of the combined samples—the bootstrap procedure.
Letting the numbers “1” through “7” denote patients who got
well and “8-12” denote persons not getting well, we COUNT
the number who got well in each sample. Then we SUBTRACT
the number who got well in the “pill” sample from the num-
ber who got well in the “no-pill” sample. We SCORE the re-
sulting difference for each trial in Z.

In the actual test, 3 more patients got well in the sample given
the pill than in the sample given the placebo. We therefore
count how many of the trials yield results where the differ-
ence between the sample given the pill and the sample not
given the pill was greater than 2 (equal to or greater than 3).
This result is the probability that the results derived from the
actual test would be obtained from random samples drawn
from a population which has a constant cure rate, pill or no
pill.

REPEAT 1000
Do 1000 experiments.

GENERATE 6 1,12 a
Randomly generate 6 numbers between “1” and “12.” Let “1-7” =
cure, “8-12” = no cure. This will be the “medicine” group.

GENERATE 6 1,12 b
Similarly for the “placebo” group.

COUNT a between 1 7 aa
Count the number of cures in the trial “medicine” group. (“Medi-
cine” is in quotes because the vector a is an arbitrary random se-
lection of our experiment—one we know has no medicinal value
because the cure rate—7/12—is the same as for the “placebo” ex-
perimental group.)

COUNT b between 1 7 bb
Count the number of cures in the trial “placebo” group.

SUBTRACT aa bb c
Subtract trial “placebo” cures from trial “medicine” cures.

SCORE c z
Keep track of each trial result in z.
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END
End one experiment, go back and repeat until 1000 are complete, then pro-
ceed.

HISTOGRAM z
Produce a histogram of the trial results.

Cancer
12 Treatments (6 Medicine, 6 Placebo)

excess cures (“medicine”—“placebo”)

Recall our actual observed results: In the medicine group, three
more patients were cured than in the placebo group. From the
histogram, we see that in only 8 percent of the simulated trials
did the “medicine” group do as well or better. The results seem
to suggest—but by no means conclusively—that the medicine’s
performance is not due to chance. Further study would prob-
ably be warranted. The following commands added to the
above program will calculate this proportion directly:

COUNT z >=3 k

DIVIDE k 1000 kk
Convert to a proportion.

PRINT kk
Print the result.

Note: The file “cancer” on the Resampling Stats software disk
contains this set of commands.
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As I wrote when I first proposed this bootstrap method in 1969,
this method is not the standard way of handling the problem;
it is not even analogous to the standard analytic
difference-of-proportions method (though since then it has
become widely accepted). Though the method shown is quite
direct and satisfactory, there are also many other resampling
methods that one might construct to solve the same problem.
By all means, invent your own statistics rather than simply
trying to copy the methods described here; the examples given
here only illustrate the process of inventing statistics rather
than offering solutions for all classes of problems.

Example 15-6: Did Attitudes About Marijuana Change?

Consider two polls, each asking 1500 Americans about mari-
juana legalization. One poll, taken in 1980, found 52 percent
of respondents in favor of decriminalization; the other, taken
in 1985, found 46 percent in favor of decriminalization
(Wonnacott and Wonnacott, 1990, p. 275). Our null (bench-
mark) hypothesis is that both samples came from the same
universe (the universe made up of the total of the two sets of
observations). If so, let us then ask how likely would be two
polls to produce results as different as were observed? Hence
we construct a universe with a mean of 49 percent (the mean
of the two polls of 52 percent and 46 percent), and repeatedly
draw pairs of samples of size 1500 from it.

To see how the construction of the appropriate question is
much more challenging intellectually than is the actual math-
ematics, let us consider another possibility suggested by a stu-
dent: What about considering the universe to be the earlier
poll with a mean of 52 percent, and then asking the probabil-
ity that the later poll of 1500 people with a mean of 46 percent
would come from it? Indeed, on first thought that procedure
seems reasonable.

Upon reflection—and it takes considerable thought on these
matters to get them right—that would not be an appropriate
procedure. The student’s suggested procedure would be the
same as assuming that we had long-run solid knowledge of
the universe, as if based on millions of observations, and then
asking about the probability of a particular sample drawn from
it. That does not correspond to the facts.

The only way to find the approach you eventually consider
best—and there is no guarantee that it is indeed correct—is by
close reference to the particular facts of the case.
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Example 15-7: Infarction and Cholesterol: Framingham
Study

It is so important to understand the logic of hypothesis tests,
and of the resampling method of doing them, that we will now
tackle another problem similar to the preceding one.

This will be the first of several problems that use data from
the famous Framingham study (drawn from Kahn and Sempos,
1989), concerning the development of myocardial infarction
16 years after the Framingham study began, for men ages 35-
44 with serum cholesterol above 250, compared to those with
serum cholesterol below 250. The raw data are shown in Table
15-4 (divided into “high” and “low” cholesterol by Kahn and
Sempos).

Table 15-4
Development of Mycardial Infarction in Framingham

After 16 Years

Men Age 35-44, by Level of Serum Cholesterol

Serum Developed MI Didn’t Develop MI Total
Cholesterol

> 250 10 125 135

<= 250 21 449 470

Source: Shurtleff, D. The Framingham Study: An Epidemiologic Investigation of
Cardiovascular Disease, Section 26. Washington, DC, U.S. Government Print-
ing Office. Cited in Kahn and Sempos (1989), p. 61, Table 3-8

The statistical logic properly begins by asking: How likely is
that the two observed groups “really” came from the same
“population” with respect to infarction rates? That is, we start
with this question: How sure should one be that there is a dif-
ference in myocardial infarction rates between the high- and
low-cholesterol groups? Operationally, we address this issue
by asking how likely it is that two groups as different in dis-
ease rates as the observed groups would be produced by the
same “statistical universe.”

Key step: We assume that the relevant “benchmark” or “null-
hypothesis” population (universe) is the composite of the two
observed groups. That is, if there were no “true” difference in
infarction rates between the two serum-cholesterol groups, and
the observed disease differences occurred just because of sam-
pling variation, the most reasonable representation of the popu-
lation from which they came is the composite of the two ob-
served groups.
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Therefore, we compose a hypothetical “benchmark” universe
containing (135 + 470 =) 605 men at risk, and designate (10 +
21 =) 31 of them as infarction cases. We want to determine how
likely it is that a universe like this one would produce—just
by chance—two groups that differ as much as do the actually
observed groups. That is, how often would random sampling
from this universe produce one sub-sample of 135 men con-
taining a large enough number of infarctions, and the other
sub-sample of 470 men producing few enough infarctions, that
the difference in occurrence rates would be as high as the ob-
served difference of .029? (10/135 = .074, and 21/470 = .045,
and .074—.045 = .029).

So far, everything that has been said applies both to the con-
ventional formulaic method and to the “new statistics”
resampling method. But the logic is seldom explained to the
reader of a piece of research—if indeed the researcher her/
himself grasps what the formula is doing. And if one just grabs
for a formula with a prayer that it is the right one, one need
never analyze the statistical logic of the problem at hand.

Now we tackle this problem with a method that you would
think of yourself if you began with the following mind-set:
How can I simulate the mechanism whose operation I wish to
understand? These steps will do the job:

Step 1: Fill an urn with 605 balls, 31 red (infarction) and the
rest (605—31 = 574) green (no infarction).

Step 2: Draw a sample of 135 (simulating the high serum-cho-
lesterol group), one ball at a time and throwing it back after it
is drawn to keep the simulated probability of an infarction the
same throughout the sample; record the number of reds. Then
do the same with another sample of 470 (the low serum-cho-
lesterol group).

Step 3: Calculate the difference in infarction rates for the two
simulated groups, and compare it to the actual difference of
.029; if the simulated difference is that large, record “Yes” for
this trial; if not, record “No.”

Step 4: Repeat steps 2 and 3 until a total of (say) 400 or 1000
trials have been completed. Compute the frequency with
which the simulated groups produce a difference as great as
actually observed. This frequency is an estimate of the prob-
ability that a difference as great as actually observed in
Framingham would occur even if serum cholesterol has no ef-
fect upon myocardial infarction.
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The procedure above can be carried out with balls in a ceramic
urn in a few hours. Yet it is natural to seek the added conve-
nience of the computer to draw the samples. Here is a
RESAMPLING STATS program (“myocar1”):

URN 31#1 574#2 men
An urn called “men” with 31 “1’s” (=infarctions) and 574 “2’s” (=no infarc-
tion)

REPEAT 1000

SAMPLE 135 men high
Sample (with replacement!) 135 of the numbers in this urn, give
this group the name “high”

SAMPLE 470 men low
Same for a group of 470, call it “low”

COUNT high =1 a
Count infarctions in first group

DIVIDE a 135 aa
Express as a proportion

COUNT low =1 b
Count infarctions in second group

DIVIDE b 470 bb
Express as a proportion

SUBTRACT aa bb c
Find the difference in infarction rates

SCORE c z
Keep score of this difference

END

HISTOGRAM z

COUNT z >=.029 k
How often was the resampled difference >= the observed difference?

DIVIDE k 1000 kk
Convert this result to a proportion

PRINT kk
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Difference between paired resamples (proportion with infarction)

Result: kk = 0.102 (the proportion of resample pairs with a dif-
ference >= .029)

The results of the test using this program may be seen in the
histogram. We find—perhaps surprisingly—that a difference
as large as observed would occur by chance fully 10 percent
of the time. (If we were not guided by the theoretical expecta-
tion that high serum cholesterol produces heart disease, we
might include the 10 percent difference going in the other di-
rection, giving a 20 percent chance). Even a ten percent chance
is sufficient to call into question the conclusion that high se-
rum cholesterol is dangerous. At a minimum, this statistical
result should call for more research before taking any strong
action clinically or otherwise.

Where should one look to determine which procedures should
be used to deal with a problem such as set forth above? Un-
like the formulaic approach, the basic source is not a manual
which sets forth a menu of formulas together with sets of rules
about when they are appropriate. Rather, you consult your
own understanding about what is happening in (say) the
Framingham situation, and the question that needs to be an-
swered, and then you construct a “model” that is as faithful
to the facts as is possible. The urn-sampling described above
is such a model for the case at hand.

To connect up what we have done with the conventional ap-
proach, one could apply a z test (conceptually similar to the t
test, but applicable to yes-no data; it is the Normal-distribu-
tion approximation to the large binomial distribution). Do so,
we find that the results are much the same as the resampling
result—an eleven percent probability.
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Someone may ask: Why do a resampling test when you can
use a standard device such as a z or t test? The great advan-
tage of resampling is that it avoids using the wrong method.
The researcher is more likely to arrive at sound conclusions
with resampling because s/he can understand what s/he is
doing, instead of blindly grabbing a formula which may be in
error.

The textbook from which the problem is drawn is an excellent
one; the difficulty of its presentation is an inescapable conse-
quence of the formulaic approach to probability and statistics.
The body of complex algebra and tables that only a rare ex-
pert understands down to the foundations constitutes an im-
penetrable wall to understanding. Yet without such under-
standing, there can be only rote practice, which leads to frus-
tration and error.

Example 15-8: Is One Pig Ration More Effective Than the
Other? (Testing For a Difference in Means With a Two-by-Two
Classification) (Program “Pigs1”)

Each of two new types of ration is fed to twelve pigs. A farmer
wants to know whether ration A or ration B is better. 2 The
weight gains in pounds for pigs fed on rations A and B are:

A: 31, 34, 29, 26, 32, 35, 38, 34, 31, 29, 32, 31

B: 26, 24, 28, 29, 30, 29, 31, 29, 32, 26, 28, 32

The statistical question may be framed as follows: should one
consider that the pigs fed on the different rations come from
the same universe with respect to weight gains?

In the actual experiment, 9 of the 12 pigs who were fed ration
A also were in the top half of weight gains. How likely is it
that one group of 12 randomly-chosen pigs would contain 9
of the 12 top weight gainers?

One approach to the problem is to divide the pigs into two
groups—the twelve with the highest weight gains, and the
twelve with the lowest weight gains—and examine whether
an unusually large number of high-weight-gain pigs were fed
on one or the other of the rations.
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We can make this test by ordering and grouping the twenty-
four pigs:

High-weight group:
38 (ration A), 35 (A), 34 (A), 34 (A), 32 (B), 32 (A), 32 (A), 32 (B), 31 (A),
31 (B), 31 (A), 31 (A)

Low-weight group:
30 (B), 29 (A), 29 (A), 29 (B), 29 (B), 29 (B), 28 (B), 28 (B), 26 (A), 26 (B),
26 (B), 24 (B).

Among the twelve high-weight-gain pigs, nine were fed on
ration A. We ask: Is this further from an even split than we are
likely to get by chance? Let us take twelve red and twelve black
cards, shuffle them, and deal out twelve cards (the other twelve
need not be dealt out). Count the proportion of the hands in
which one ration comes up nine or more times in the first
twelve cards, to reflect ration A’s appearance nine times among
the highest twelve weight gains. More specifically:

Step 1. Constitute a deck of twelve red and twelve black cards,
and shuffle.

Step 2. Deal out twelve cards, count the number red, and
record “yes” if there are nine or more of either red or black.

Step 3. Repeat step 2 perhaps fifty times.

Step 4. Compute the proportion “yes.” This proportion esti-
mates the probability sought.

Table 15-4 shows the results of fifty trials. In three (marked by
asterisks) of the fifty (that is, 6 percent of the trials) there were
nine or more either red or black cards in the first twelve cards.
Again the results suggest that it would be slightly unusual for
the results to favor one ration or the other so strongly just by
chance if they come from the same universe.
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Table 15-4
Results of Fifty Random Trials for Problem “PIGS1”

Trial Blk Red Trial Blk Red Trial Blk Red

1 7 5 19 5 7 37 6 6

2 7 5 20 5 7 38 5 7

3 6 6 21 4 8 39 7 5

4 6 6 *22 9 3 40 5 7

5 6 6 23 7 5 41 6 6

6 4 8 24 5 7 42 4 8

7 6 6 25 5 7 43 7 5

8 6 6 26 7 5 44 5 7

9 5 7 27 6 6 45 8 4

10 8 4 *28 9 3 46 5 7

11 6 6 29 7 5 47 5 7

12 7 5 30 7 5 48 6 6

13 8 4 31 8 4 49 6 6

14 5 7 *32 3 9 50 6 6

15 6 6 33 5 7

16 7 5 34 6 6

17 8 4 35 5 7

18 8 4 36 5 7

Now a RESAMPLING STATS procedure to answer the ques-
tion:

The NUMBERS statement creates an array of numbers “1”
through “24,” which will represent the rankings of weight gains
for each of the 24 pigs. We REPEAT the following procedure
for 1000 trials. First we SHUFFLE the elements of array A so
that the rank numbers for weight gains are randomized and
placed in array B. We then TAKE the first 12 elements of B and
place them in C; this represents the rankings of a
randomly-selected group of 12 pigs. We next COUNT in C the
number of pigs whose rankings for weight gain were in the
top half—that is, a rank of less than 13. We SCORE that num-
ber and END the loop.

Since we did not know beforehand the direction of the effect
of ration A on weight gain, we want to count the times that
either more than 8 of the random selection of 12 pigs were in
the top half of the rankings, or that fewer than 4 of these pigs
were in the top half of the weight gain rankings—(The latter
is the same as counting the number of times that more than 8
of the 12 non-selected random pigs were in the top half in weight
gain.)
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We do so with the final two COUNT statements. By adding
the two results J and K together, we have the number of times
out of 1000 that differences in weight gains in two groups as
dramatic as those obtained in the actual experiment would
occur by chance.

NUMBERS 1,24 a
Constitute the set of the weight gain rank orders. A is now a vector consist-
ing of the numbers 1—24, in that order.

REPEAT 1000
Do the following experiment 1000 times.

SHUFFLE a b
Shuffle the ranks of the weight gains, put the shuffled ranks in b.

TAKE b 1,12 c
Take the first 12 ranks, put them in c

COUNT c <= 12 d
Determine how many of these randomly selected 12 ranks are less
than 12 (i.e. 1-12), put that result in d.

SCORE d z
Keep track of each trial result in z.

END
End one experiment, go back and repeat until 1000 trials are complete.

HISTOGRAM z
Produce a histogram of the trial results.

PIGS1: Random Selection of 12 Weight Gains (24 Pigs)

# of top half weight gains picked
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We see from the histogram that, in about 3 percent of the tri-
als, either more than 8 or fewer than 4 top half ranks (1-12)
made it into the random group of twelve that we selected.
RESAMPLING STATS will calculate this for us as follows:

COUNT z >= 9 j
Determine how many of the trials yielded 9 or more top ranks.

COUNT z <= 3 k
Determine how many trials yielded 3 or fewer of the top ranks.

ADD j k m
Add the two together.

DIVIDE m 1000 mm
Convert to a proportion.

PRINT mm
Print the results.

Note: The file “pigs1” on the Resampling Stats software disk
contains this set of commands.

The decisions that are warranted on the basis of the results
depend upon one’s purpose. If writing a scientific paper on
the merits of ration A is the ultimate purpose, it would be sen-
sible to test another batch of pigs to get further evidence. (Or
you could proceed to employ another sort of test for a slightly
more precise evaluation.) But if the goal is a decision on which
type of ration to buy for a small farm and they are the same
price, just go ahead and buy ration A because, even if it is no
better than ration B, you have strong evidence that it is no worse.

Example 15-9: Do Planet Densities Differ?

Consider the five planets known to the ancient world.
Mosteller and Rourke (1973, pp. 17-19) ask us to compare the
densities of the three planets farther from the sun than is the
earth (Mars, density 0.71; Jupiter, 0.24; and Saturn, 0.12) against
the densities of the planets closer to the sun than is the earth
(Mercury, 0.68; Venus, 0.94).

The average density of the distant planets is .357, of the closer
planets is .81. Is this difference (.353) statistically significant,
or is it likely to occur in a chance ordering of these planets?

We can answer this question with a permutation test; such sam-
pling without replacement makes sense here because we are
considering the entire set of planets, rather than a sample
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drawn from a larger population of planets (the word “popu-
lation” is used here, rather than “universe,” to avoid confu-
sion.) And because the number of objects is so small, one could
examine all possible arrangements (permutations), and see
how many have (say) differences in mean densities between
the two groups as large as observed.

Another method that Mosteller and Rourke suggest is by a
comparison of the density ranks of the two sets, where Saturn
has rank 1 and Venus has rank 5. This might have a scientific
advantage if the sample data are dominated by a single “out-
lier,” whose domination is removed when we rank the data.

We see that the sum of the ranks for the “closer” set is 3+5=8.
We can then ask: If the ranks were assigned at random, how
likely is it that a set of two planets would have a sum as large
as 8? Again, because the sample is small, we can examine all
the possible permutations, as Mosteller and Rourke do in Table
3-1 (p. 56) [Substitute “Closer” for “B,” “Further” for “A”]. In
two of the ten permutations, a sum of ranks as great as 8 is
observed, so the probability of a result as great as observed
happening by chance is 20 percent, using these data. (We could
just as well consider the difference in mean ranks between the
two groups—(8/2 – 7/3 =) 1.6.)

To illuminate the logic of this test, consider comparing the
heights of two samples of trees. If sample A has the five tallest
trees, and sample B has the five shortest trees, the difference
in mean ranks will be (6+7+8+9+10=) 40—(1+2+3+4+5=) 15,
the largest possible difference. If the groups are less sharply
differentiated—for example, if sample A has #3 and sample B
has #8—the difference in ranks will be less than the maximum
of 40, as you can quickly verify.

The method we have just used is called a Mann-Whitney test,
though that label is usually applied when the data are too
many to examine all the possible permutations; in that case
one conventionally uses a table prepared by formula. In the
case where there are too many for a complete permutation test,
our resampling algorithm is as follows (though we’ll continue
with the planets example):

1. Compute the mean ranks of the two groups.

2. Calculate the difference between the means computed in
step 1.

3. Create an urn containing the ranks from 1 to the number of
observations (5, in the case of the planets), and shuffle them.
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4. Since we are working with the ranked data, we must draw
without replacement, because there can only be one #3, one
#7, and so on. So draw the number of observations correspond-
ing to the number of observations—2 “Closer” and 3 “Further.”

5. Compute the mean ranks of the two simulated groups of
planets.

6. Calculate the difference between the means computed in
step 5 and record.

7. Repeat steps 3 to 7 perhaps 1000 times.

8. Count how often the shuffled difference in ranks exceeds
the observed difference of 1.6.

NUMBERS 1,5 ranks
step 3 above

REPEAT 1000
step 7

SHUFFLE ranks ranks$
step 3

TAKE ranks$ 1,2 closer
step 4

TAKE ranks$ 3,5 further
step 4

MEAN closer m_close
step 5

MEAN farther m_far
step 5

SUBTRACT m_close m_far diff
step 6

SCORE diff z
step 6

END
step 7

COUNT z >=1.6 k
step 8

DIVIDE k 1000 prob
PRINT prob

Result:   prob   =    0.21
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Interpretation: 21 percent of the time, random shufflings pro-
duced a difference in ranks as great as or greater than observed.
Hence, on the strength of this evidence, we should not con-
clude that there is a statistically significant difference in den-
sities between the faurther planets and the closer planets.

This chapter has begun the actual work of testing hypotheses.
The next chapter continues with discussion of somewhat more
complex problems with counted data—more complex to think
about, but no more difficult to actually treat mathematically
with resampling simulation. If you have understood the gen-
eral logic of the procedures used up until this point, you are
in command of all the necessary conceptual knowledge to con-
struct your own tests to answer any statistical question. A lot
more practice, working on a variety of problems, obviously
would help. But the key elements are simple: 1) Model the real
situation accurately, 2) experiment with the model, and 3) com-
pare the results of the model with the observed results.


