
Resampling Stats in MATLAB 1

This document is an excerpt from
Resampling Stats in MATLAB

Daniel T. Kaplan
Copyright (c) 1999 by Daniel T. Kaplan, All Rights Reserved
This document differs from the published book in pagi-
nation and in the omission (unintentional, but unavoid-
able for technical reasons) of figures and cross-references
from the book. It is provided as a courtesy to those
who wish to examine the book, but not intended as a re-
placement for the published book, which is available from

Resampling Stats, Inc.
www.resample.com

703-522-2713

Chapter 5: Checking Resampling Results

Naomi Bush has just finished her doctoral dissertation examining the
flashing synchronization of the Malaysian firefly, Pteroptyx malaccae.
The central part of her work concerns a hypothesis test on whether
one fly’s flashing rate influences another fly’s rate. She has done the
calculations, of course, using resampling.

She is walking home from her laboratory, having just sent off the
dissertation for binding. Her head is high as she contemplates whether
or not she will feign surprise when she gets the telephone call from the
Nobel Committee in Stockholm.

As she gets closer to home, her confidence wanes. Like all good
scientists she looks at her results with skepticism. “How do I know
whether I used enough trials in my computations? Did I have enough
data for the computations to give reliable results? How did I know
that I didn’t make a programming error? Perhaps the flies don’t really
influence one another in the way I described!”

Questions like these surround any computation and really any answer
to any statistical question. In this section we discuss some ways to answer
these questions.

5.1 How many trials to use

Just about every example in this book involves repeating a resampling
trial many times. The programs contain lines like:

Ntrials=1000;
for trials=1:Ntrials

2 Resampling Stats in MATLAB

resample and compute your statistic for this trial

tally the result for this trial

end

You should understand that resampling is done at random and therefore
the result of any single trial is somewhat random. By combining the
results of many trials, we reduce this randomness somewhat, but it is
still there to some extent. By increasing the number of trials we reduce
the effect of randomness.

For example, consider Example ?? where we wanted to know the 1%
percentile of the total lifetime of the four light bulbs in the package. If
we re-run this example 10 times, we get several different answers:

4614 4780 4810 4475 4544 4475 4660 4300 4660 4780

All of the answers are close to one another. Are they “close enough?”
This is the question of precision.1 The answer to this question depends
on what you want to use the answer for. Without knowing the particular
use for the answer to your statistical question, we can’t tell you if a given
answer is precise enough. We can, however, tell you how to estimate the
precision of your answer and how to make the precision better if you feel
you need to do this.

1. Compute the quantity you’re interested in. For the light bulbs
this was the 1% percentile of the total lifetime of the bulbs in the
package.

2. Repeat the calculation 5 or 10 times. Look to see if the spread of
values is acceptable for you for your purpose. (If the values are
all exactly the same, and resampling is involved, then something
may be wrong with your program.) For Example ??, repeating the
calculation produced a spread of values ranging from 4300 to 4810
hours. This might not be precise enough. Since the plan is to mark
the package with a guarantee that total lifetime is greater than 4500
hours, if 4300 hours is the true 1% percentile the company will have
more refunds to pay than it intended. On the other hand, if 4810
were correct, the company could earn additional sales by marking
its package with a guarantee of 4800 hours.

3. If the spread in step (2) is unacceptably large, then increase the
number of trials used in your calculation. As a rule of thumb, if

1Later, we’ll consider the matter of how accurate the answer is; whether or not the
answers are systematically wrong.

How Much Data 3

you want to reduce the spread by a factor of N , you need to use N2

as many trials. For example, suppose you are using 1000 trials and
conclude that your result is too imprecise. You want to improve
the precision by a factor of 3, that is, make the spread 1/3 as big.
Since N is 3, you should try 9 times as many trials, or 9000 trials.

We repeated the Example ?? computations using 10,000 trials. To
get an idea of the spread of values with an increased number of
trials, we repeated the runs 10 times — altogether 100,000 tri-
als — and got the following results (which have been sorted into
ascending order):

4453 4497 4497 4497 4497 4520 4544 4544 4544 4544

It seems that 4500 is a pretty good answer. However, many of the
values are repeated multiple times. This is a sign of trouble; there
might not be enough data in the first place. See Sec. ??

How many trials should you use when first doing a calculation? Here
are some hints:

• When writing a new program, use a very small number of trials
(say, 2 or 10) for the purpose of debugging. Everyone makes mis-
takes when typing a program; once you have gotten the program
working to the point where it doesn’t produce error messages or
give obviously incorrect answers, then increase the number of trials.

• When computing confidence intervals, the number of trials needed
depends on the confidence level you want to use. You can use the
following guidelines (which are based on references [?] and [?]):

Confidence level 99% 95% 90% 60% Std. Err.
Number of trials 5000 1000 500 100 50

“Std. Err.” refers to the “standard error” which is the standard
deviation of a sample statistic.

• Using more trials is better than using fewer trials, so long as the
speed and memory size of the computer are not causing a problem.

5.2 How Much Data is Needed

Imagine a researcher who, with great effort, has collected one data point.
Without other information, you know nothing about the reliability of
this single data point. Neither conventional inference procedures nor

4 Resampling Stats in MATLAB

resampling will produce very useful results: all the resamples will be
identical.

How about when there are 2 data points? Is that enough?
The question, “How many data points do I need?” is like the ques-

tion, “How many trials should I use?” An answer to both questions is,
“More is better.” This answer isn’t much use when talking about the
number of data points needed: you can’t always collect more data, either
because you don’t have the time, the energy, or the money.

There are, of course, many situations in which one data point is en-
tirely sufficient. This occurs when you know from previous experience
what is the variability of the measurement and you know that this vari-
ability is so small that it can be ignored. For example, when measuring
the air pressure in a car tire, we generally take just one measurement.
The precision of the gauge is good enough that averaging multiple mea-
surements would not improve the measurement in any practically mean-
ingful way.

The situations we’re considering in this section are those in which
the variability of the measurement is unknown, and we want to use the
spread of several measurements in order to infer something about the
variability of a single measurement.

Here are three different answers to the question of how many data
points you need to get reliable results:

1. Rule of thumb:

• Don’t expect reliable results if you have 5 or fewer data points.

• If you have more than 20 data points, you should be pretty safe,
unless your data include outliers or if you think the system you are
studying sometimes — but rarely — produces “way out” values.

2. Simulation.

How did we construct the rule of thumb in (1)? We did a simulation.
If you can construct a relevant simulation model of the process that
generates your data, you can construct your own rules of thumb that
will be more relevant to your own cases.

Here’s how we developed the rules of thumb in (1):

(a) We assumed that people are interested in quantities such as 95%
confidence intervals of the mean of n samples.

How Much Data 5

(b) We assumed that data are distributed in a normal-shaped distribu-
tion. If your data are different, this assumption can give misleading
results.

(c) We constructed a way of generating data like (b) and made many
such data sets, each with n data points. (See page ?? for docu-
mentation on normal.)

Figure 1:
Results from a simulation showing how the

actual confidence level compares to the confi-
dence level that was requested for different
sizes of data sets. The actual confidence
level is defined to be the fraction of times
that the computed confidence interval con-
tains the true mean of the distribution from
which the data sets were drawn. Three dif-
ferent requested confidence levels are shown:
95%, 90%, and 60%. It can be seen that the
actual confidence level is somewhat below the
requested level, but that the discrepancy be-
comes small as the size of the data set in-
creases. This graph is based on a simulation
of data drawn from a normal distribution.

(d) For each of the data sets in (c), we used resampling to find 95%
confidence intervals of the mean of the n data points. We call each
of these calculations a “run” which consists of 1000 resampling
trials.

(e) We know that the true mean of the data in (c) is zero. (We
know this because of a theoretical understanding of how computer
random number generators work.) If the resampling confidence-
interval procedure is working prefectly, about 95% of the runs in
(d) should give a confidence interval that includes zero. But the
procedure doesn’t work perfectly, in part because a small sample
of data can give a misleading indication of the mean and spread
of the process generating the data. Figure ?? shows how often the
confidence error of the mean of a randomly generated data set con-
tains the true mean, as a function of the size of the data set. This
is the actual confidence level of the interval. The figure indicates
that for very small data sets the confidence intervals are system-

6 Resampling Stats in MATLAB

atically too small, that is, the actual confidence level is below the
requested confidence level.

If your data set is too small, and it is impractical to collect more
data, and you really do want to have the correct confidence inter-
val, there is one thing you can do, called recalibration. In brief,
this consists of asking for confidence interval at a higher level of
confidence, say 99% percentile, but then interpreting the results
as giving the confidence interval at the lower level of confidence.
For details on how to do this, see reference [?]. To illustrate how
calibration works, suppose that you had a data set of 10 samples
drawn from a normal distribution. You want a 90% confidence
interval. Looking at Figure ?? you see that if you ask for a 90%
confidence interval you will be getting what is really at an 85%
confidence level. By asking intead for a 95% confidence level, the
computations will produce, on average, what is really a 90% level.

3. Jackknife-after-bootstrap

If you aren’t sure what type of simulation to use in (2), then here is a
general method for deciding whether you have enough data to justify
confidence in your results. Note that this method won’t tell you how
much data you need, just whether you have enough, and note also that
a conclusion that you have enough data is not definitive.

The method is based on the idea that if you have enough data, then
dropping one data point shouldn’t change the answer very much. On
the other hand, if there’s not enough data then a single point might
have a lot of influence. This suggests that one can analyze the situation
by repeating the calculation as many times as there are observations,
leaving out each of the data points in turn. The resulting set of answers
will reflect how much influence each data point has. If some points
have a lot of influence, we expect there to be a wide spread in the set of
answers and we can quantify the spread of the results using the standard
deviation. This method goes under the technical name jackknife-after-
bootstrap. (See reference [?].) This procedure has been implemented as
the program jab in Resampling Stats.

To illustrate, consider the data set
� data = [1 2 3 4 5];
The mean of data is 3, but we are interested in the confidence intervals.
Considering that we have only 5 data points, we decide to compute 50%
confidence intervals. We use the program confintervals which carries
out the resampling:

How Much Data 7

� confintervals(data, ’mean(#)’, .5)
ans: 2.4 3.4

But how reliable are these intervals themselves? To examine this
question, we use jackknife-after-bootstrap:
� jab(data, ’confintervals(#, ’’mean(#)’’, .5)’)

ans: 1.7968 3.1532

2.7929 4.2071
The lower end of the 50% confidence interval is (with 95% confidence)
somewhere between 1.8 and 3.2. The upper end is between 2.8 and 4.2.

Suppose the data contained an outlier.
� data2 = [1 2 3 4 50];
Running jab on data2, we get a different picture.
� jab(data2, ’confintervals(#, ’’mean(#)’’, .5)’)

ans: 2.0429 3.4571

0.2084 33.8916
We see that we have essentially no idea where the upper end of the 50%
confidence interval is.

Example 1: Enough light-bulb data?

Pity the corporate executive who decided to offer a money-back guar-
antee on packages of light bulbs in Example ??. The guarantee is that
the total lifetime of the bulbs will be 4500 hours or greater. The exec-
utive’s decision was based on a set of data of the lifetimes of lightbulbs
tested in the company’s quality control lab,
� data = [2103 2786 2543 1987 7 2380 3102 2452 3453 2543];
The executive used a 98% confidence interval on the sum of the lifetimes
of the 4 light bulbs in a package:
� confintervals(data,’sum(#(1:4))’,.98)
giving the interval 4497 hours to 12443. The number of trials was set
fairly high, so these numbers seem reliable and setting the guarantee at
4500 hours seems like a safe bet: only 1% of packages will fail the guaran-
tee. But is the data set large enough? We try jackknife-after-bootstrap:
� jab(data, ’confintervals(#,’’sum(#(1:4))’’,.98)’)
2355 7402
11713 13080
We see that the left boundary of the 98% confidence interval is likely
somewhere between 2355 and 7402 hours (with 95% confidence). This
indicates that the value of 4500 is not very reliable. Since in this case
the corporate executive is counting on not having too many violations

8 Resampling Stats in MATLAB

of the guarantee, there is a great deal of uncertainty about whether this
will happen. Although 4500 was a reasonable 1% percentile for the ex-
act values in the data set, this data set is only a small sample of all the
lightbulbs produced by the factory. One light bulb, with lifetime 7 hours,
has had a great influence on the results. The data set implies that such
short-lived bulbs are only 10% of the output of the light-bulb factory,
but the data set is too small to know that 10% with any reliability. Using
jackknife-after-bootstrap provides an indication of this.

Having committed himself to a guarantee of 4500 hours, and having
realized that his conclusions are not reliable, the executive starts to worry
about how bad the damage might be. He wonders what fraction of
packages will have bulbs with a total lifetime less than 4500 hours. The
file less4500.m contains commands for doing a resampling simulation
of this:

function res = less4500(values)
z = starttally;
for trial = 1:1000

lifetime = sum(sample(4,data));
tally lifetime z;

end
res = proportion(z<4500);

Running this script
� less4500(data) ⇒ ans: 0.008

The result is approximately 1%, as the executive foresaw. However,
jackknife-after-bootstrap tells a more informative story:
� jab(data, ’less4500(#)’)

ans: -0.0014 0.0220

Given these data, the fraction of packages in violation of the warranty
might be as high as 2.2% (with 95% confidence). It’s time for the ex-
ecutive to cross his fingers. (The negative lower bound given by jab

doesn’t make sense in terms of a fraction of lightbulbs. It arises be-
cause jab bases its calculation on the standard deviation of the spread
of jackknifed values.)

Soley for the purposes of illustration, we imagine the situation if the
executive had asked for more data, and had received a second data set
back that was identical to the original. Now the executive has twice
as much data, but since the distribution of the data is unchanged the
original conclusion of 4500 hours for a 1% percentile of the total package
lifetime would be unchanged. But with twice as much data, jab indicates

Testing 9

a narrower range of possible values.
� jab(concat(data,data), ’less4500(#)’)

ans: 0.0017 0.0187

Trying this yet again, with 4 times as much data, the range is only a
bit narrower: .03% to 1.6%. This still isn’t enough data to be confident
that the actual rate of guarantee violations will be less than 1%.

Whether a particular data set is large enough depends importantly on
what you are calculating. In the light-bulb example (Example ??), the
data are not adequate for computing the fraction of packages that have
a lifetime under 4500 hours to the accuracy required by the demands of
corporate finance (that is, “don’t lose money.”). However, these same
data might be quite adequate for computing a meaningful median or a
10% percentile lifetime. Unfortunately, these are not a useful quantities
for setting the bulb-lifetime quarantee. The point here is not that you
should pick statistics that you’re not interested in just because you hap-
pen to have enough data to make a meaningful estimation; rather, you
should realize that the question of “enough data?” may have different
answers for different statistics. If outliers in your data imply that the
mean is not reliable, the median might be. (Or, the reverse might hold
in some circumstances).

The computations in this section can take much, much longer than
the other resampling computations. This is because each resampling
computation is computed 10, or 100, or even 1000s of times, depending
on the length of the data set.

@@ ��
�� @@P��PPq

caution!

There are no guarantees with the jackknife-after-bootstrap. If the jackknife-after-
bootstrap shows no problem with the size of your dataset, that may just mean
that your too-small data set didn’t include any troublesome values, such as the 7
in the lightbulb data. This doesn’t mean that the troublesome cases don’t exist,
just that your sample happened not to include them yet. A larger sample might.
As a real-world example of this, consider the space-shuttle data of Example ??:
the fact that there was not a crash of the shuttle in first 24 flights does not mean
that a crash was impossible.

@@ ��
�� @@P��PPq

caution!

10 Resampling Stats in MATLAB

5.3 Testing your programs

When you write a computer program using Resampling Stats or any
other computer language, you intend it to perform some calculation
and give an answer. You likely don’t know the answer, otherwise you
wouldn’t need to write the program. How do you know whether the
program is giving the right answer?

In the previous two sections we discussed problems that can arise
from using too few trials or too few data points. Here we consider prob-
lems in the calculation itself and how to avoid them. Of course it would
be impossible for use to tell you how to avoid all problems, but we can
point out some of the common sources of problems and what to do about
them.

1. Write instructions in a file so that you can edit and revise them and
so that you have a record of what you did. When using MATLAB
you can type commands at the prompt. For simple commands,
such as
� mean(data)
typing at the prompt is fine. When commands become compli-
cated, though, it is much better to put the commands in a file
and then execute those commands by giving the name of a file.
Instructions for this are given in Sec. ?? (Steps 12 and 13). By
putting commands in a file you avoid the need to retype the entire
sequence each time you find a mistake; retyping almost invariably
leads to further mistakes. Also, if you don’t put commands in a
file you will be reluctant to test them properly, which is essential
to making your results reliable.

2. Test your program on a problem where you know the answer. Such
testing is essential if you are to have any confidence that your
programs are performing reliably. Of course, it’s generally not easy
to figure out some relevant data set where you know the answer.
One systematic way to do this is to use simulation as in Sec. ??.

3. Avoid writing unnecessary programs. For instance, if you want to
compute confidence intervals of some statistic, Resampling Stats
provides a general-purpose program, confintervals. To use this
program you need to give three pieces of information: your data
set, a means to compute the statistic, and a confidence level as in
� confintervals(mydata, ’median(#)’, 0.90)
will compute the 90% confidence interval of the median of mydata.

Testing 11

Another general-purpose program described previously in this sec-
tion, jab, carries out the jackknife-after-bootstrap.

4. Look at intermediate results. For instance, rather than just looking
at the percentiles of the tallying vector in a confidence interval
calculation, look at the values of the tallying vector itself. If you
see, for example, that there are only 2 points in the tallying vector,
you can suspect a bug in your program: you haven’t conducted
enough trials.

