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Chapter 4: Updating our View: Bayesian Analysis

The way we view the world is often stated in terms of probabilities: the
probability of drawing an ace of spades from a normal deck of cards is
1
52 ; the probability of getting lung cancer is 7%; the chance of rain today
is 40% according to the television report last night, but 80% according
to the morning radio news.

Actually, the above statements are not complete: they fail to tell us
the complete situation to which they apply. If you are playing stud poker,
the probability of drawing the ace of spades changes depending on how
many cards have been dealt and on the information you already have:
if you already hold the ace of spades your opponent has zero chance
of getting that card, although your opponent may reckon the chances
differently based on her own information or lack thereof. The probability
of getting lung cancer depends critically on whether a person smokes. For
those who do not smoke, the probability of getting lung cancer is less
than 1%; for those who do smoke, the probability is much greater than
7%. The weather forecast is based on reading current weather conditions
— the locations of cold and warm fronts, etc. If those conditions change,
then the forecast probability changes.

Data tell us something about the world. One way to think about
data is that they provide information that may change our description
of the world in terms of probabilities: a change in the position of a cold
front can change the forecast probability of rain.

Suppose we are in the process of collecting some new data, but have
not yet examined these data. Our view of the world before we consider
our new data is our prior view. Our view after we take our data into
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account is our posterior view. Data provide the bridge between the prior
view and the posterior view. Resampling provides one way of computing
posterior probabilities given our data and our prior probabilities.

Example 1: The Basketball Slump Revisited

Consider again Larry Bird’s performance in the 1988 playoffs, which
we looked at in Example ?? using the hypothesis testing framework.
Here, we’ll take a Bayesian perspective.

Before the playoffs start, we have some opinion about the chance
that Bird will be in a slump during the playoffs. This opinion might
be founded on our previous observations of Bird’s playoff performances
in other years, his playing record just before the playoff began, whether
he has had an injury recently, whether he has just signed a lucrative
contract, or whatever other factors we deem relevant. Whatever the
origins of our opinion, informed or not, subjective or not, this constitutes
our prior view of the probability that Bird will be in a slump during the
playoffs.

Three games later, we have some new data. Bird has scored 20 out of
57 attempts. This performance might alter our view about whether Bird
is in a slump or not — it would seem reasonable to change our opinion
in the direction of increasing the probability that he is in a slump during
the playoffs. But how can the appropriate change be calculated from the
data?

In order to talk about change, we need to consider “change from
what?” We start by describing the prior probability distribution. Rather
than dividing the possibilities into slump or no-slump, we hypothesize a
distribution for Bird’s success rate in shooting baskets:

prior = [5 .25; 5 .30; 5 .35; 5 .40; 5 .45; 75 .52 ];

This says that there is a 5% chance that Bird is shooting quite poorly (for
him) — making 25 out of 100 shots. Similarly, there is a 5% chance of him
making 30 out of 100 shots and so on. This distribution results in Bird
shooting, on average, about 48 out of 100 shots, which is consistent with
his long-term record. The other details of the distribution are somewhat
arbitrary, but they are our best guess about how Bird shoots.

How did we decide on the particular probabilities and values to use
in prior? To be honest, we made them up. Perhaps they reflect Bird’s
shooting record in regular season games; perhaps they incorporate some
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other information. As we said above, they are our “best guess” about
Bird’s shooting patterns.

In the program birdbayesian.m, we use this prior probability dis-
tribution to generate many simulations of Bird’s taking 57 shots. This
is done using a two-stage process. First, we pick a shooting rate from
the prior distribution:

rate = sample(1,prior);

Next, we generate shots according to the rate we have just picked. Given
that rate is the probability of a successful basket, then 1-rate is the
probability of missing. We’ll code a miss as 0 and a success as 1, counting
how many successes occur in 57 consecutive samples:

bird = [(1-rate) 0; rate 1];
baskets = count( 1 == sample(57, bird) );

This constitutes a single simulation of 57 consecutive shots at the given
success rate. We can carry out many such simulations, tallying the result
of each simulation. We’ll keep track both of the success rate randomly
selected from the prior distribution and the corresponding number of
baskets in the simulated 57-shot sequence at that success rate.

tally rate raterecord;
tally baskets scorerecord;

So far, all we have are many simulations of the success rate of the 57-
shot sequence. The simulations are consistent with our prior probability
distribution.

Now, we want to incorporate the knowledge that comes from our ob-
served data that Bird made 20 of the 57 shots. Only those simulations
where Bird scored exactly 20 shots are consistent both with our prior
distribution and with the observed data. Therefore, we select out those
shooting rates that resulted in observing exactly 20 baskets:
� posterior = raterecord( find( scorerecord == 20 ));

This give a new set of data, posterior, that reflects the relative
probabilities of different shooting rates that are consistent both with the
prior probability distribution and the observed data: this is our posterior
probability distribution.
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Figure 1:
The Bayesian analysis of Bird’s playoff per-

formance. Top: our prior distribution of
Bird’s success rate. Bottom: The posterior
distribution conditioned on the observation
that Bird made 20 out of 57 shots.

If we define a slump (for Bird) as a success rate less than 40%, we
can compute the posterior probability of being in a slump:
� proportion(posterior<.40) ⇒ ans: .51

Thus, we find that there is about a 50% probability that Bird was in a
slump for the playoffs. This result reflects both the observed data and
our subjective prior probability — before the data were collected — that
Bird was in a slump.

If you are concerned about how the details of prior influenced the
results of the calculation, try changing some of those details to see how
they reflect the results. You can even try making several different priors
and assign each of them a subjective probability of being correct. (See
the documentation for urn for programming details.) Insofar as your
results depend on a detail of your prior which cannot be justified, your
results cannot be justified. But it often happens that the details of the
prior have little effect on the results, in which case it doesn’t matter
whether the detail is justified or not.

Example 2: Revisiting the Space Shuttle

In designing the space shuttle, engineers did a careful job to estimate
risks. Extensive studies were done to estimate the probabilities of failure
of each component. For some systems such as the in-flight computers,
the probability of component failure was substantial. Sufficient backup
systems were provided so that the overall system had a low probability
of failure.

In estimating the probability of an accident, certain assumptions are
made. For instance, testing of the now-infamous O-ring seals was done at
typical temperatures encountered at the launch site in Florida. On the
day of the Challenger disaster, however, temperatures were well below
normal. (See Tufte [?] for a case study of how data presentation tech-
niques used by nasa engineers unintentionally obscured the relationship
between temperature and O-ring failure.)
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We saw in Example ?? that on the eve of the Challenger flight the
95% confidence interval for the accident rate as 0% to 11%. The upper
end of this interval hardly seems to justify a decision to class the launch
as non-experimental or safe. Remember, though, that there was more
information available than the observed data of no crashes in 24 flights.
There were also the engineering studies that showed a very low risk of
accident.

The engineering studies can be used to estimate a prior probability
distribution for the accident rate. For the sake of this example, we will
assume this engineering-based prior to be an accident rate uniformly
distributed in the range 0% to 0.01%. This is a very low accident rate as
befits careful engineering design. But there is also the possibility that the
assumptions that went into the engineering analysis have been violated.

It’s impossible to give a completely objective number for the prob-
ability that the actual conditions critically violate engineering assump-
tions. But it seems prudent — on the first flight — to assume that this
probability is quite high, say, 75%. If the engineering assumptions are
invalid, we do not know what the accident rate is, so for want of other
information we will assume that it is equally likely to be anything from
0 to 100%.

Overall, our prior distribution for the accident rate is

% engineering-based accident rate

engineering = uniform(0, 0.0001);
% accident rate from failed assumptions

failed = uniform(0,1);
% combine these two rates, using our

% assumed 25% chance that the engineering

% assumptions are satisfied.

prior = urn(.25, engineering, .75, failed);

After the first flight we have some data about the accident rate.
We can use these data to convert the prior distribution to a posterior
distribution.

function posterior = updateshuttle(prior, crash)
% posterior = updateshuttle(prior, crash)
% translate a prior accident rate into a posterior
% prior -- prior probability distribution of accident rate
% crash -- 0 if there was no crash, 1 otherwise.
% The posterior takes the form of a list of accident rates.
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Ntrials = 1000;
posterior = starttally;
for trial = 1:Ntrials

rate = sample(1, prior);
thisflight = sample(1, [(1-rate) 0; rate 1]);
% 0 means no accident, 1 == accident
if thisflight == crash % observation matches simulation

posterior = [posterior rate]; %or: tally rate posterior;
end

end

Figure 2:
Probability distributions for the accident rate
for the Space Shuttle. The logarithm of
the accident rate is shown. (When the log-
arithm is -1, for example, this means that
the accident rate is 0.1.) The prior distribu-
tion is based on engineering information and
a subjective assumption that — before any
flights occur — the engineering assumptions
are quite likely to be wrong. The posterior is
computed after 1, 5, 10, and 20 flights, with
no accidents observed.

To find the posterior after the first flight, where the observation is
that there was not a crash:
� pos1 = updateshuttle(prior,0);
For the second flight, our prior is the posterior distribution from after
the first flight.
� pos2 = updateshuttle(pos1,0);
Similarly, the prior before the third flight is the posterior for the second
flight, and so on.

Figure ?? shows the distribution of the accident rate for the prior
and for the posterior after 1 flight, 5 flights, 10 flights, and 20 flights,
with no crashes observed. Since the engineering-based accident rates are
so much smaller than the assumption-violation accident rates, the plots
show the logarithm of the accident rate. For example, a bar in the plot
near -5 on the x-axis corresponds to an accident rate of 10−5 or 0.001%.

In the histograms in Fig. ?? there are two broad peaks. The right-
most peak (at large accident rates) corresponds to the accidents that
arise from violation of the engineering assumptions. The leftmost peak
corresponds to accidents anticipated by the engineering calculations.
The plots show that as the number of incident-free flights increases, the
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distribution of accident rates shifts strongly to the left, toward the en-
gineering calculations. The experience with 20 flights provides evidence
that lowers the probability of an assumption-violation accident from the
initial prior of 75% to an after-20-flight posterior of 17%.

In reality, nasa has a lot of other information beyond whether or not
there was a crash. This information comes from the telemetered systems
on the shuttle. This information could be used to revise the engineering
estimates and to reduce the probability of the possible unknown viola-
tions of the engineering assumptions. These calculations could be made
using the same Bayesian approach taken in this example:

data
↓

prior → posterior


