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Chapter 3: Testing Hypotheses with Data

3.1 Concepts of Hypothesis Testing

In the first 3 games of the 1988 NBA playoff series between Boston and
Detroit, Larry Bird scored 20 of 57 shots. Since Bird had previously
made 48% of his shots, he would have been expected to score 28 out of
the 57 attempts. The Washington Post said

“Larry Bird is so cold he couldn’t throw a beachball in the
ocean ... They fully expect Bird to come out of his horrendous
shooting slump.” (May 30, 1988, p.D4)

The use of the word “slump” suggests that Bird is playing much worse
than usual. In the case of a basketball game, there is little to be done
except perhaps pep talks or — unimaginably — replacing Bird. But
problems such as this are common in many settings. For example, in
industrial production the quality of the goods produced may fall below
the standards for a time and it is important to know whether this is
just a chance fluctuation or whether the production line ought to be
stopped to allow readjustments, whether new suppliers of raw materials
ought to be sought, etc. Such problems are sometimes called quality
control problems, and are an example of a common situation in statistical
inference.

The question that statistical inference addresses is this: “Do the data
actually support the conclusion that something has gone wrong?” In the
case of Larry Bird, we want to know if he is actually in a slump. The 57
attempts made by Bird in the playoffs are a sample of all of the possible
attempts by Bird. We would not expect him to make exactly 48% of his
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attempts even if he were playing perfectly up to par. Instead, he might
make more or fewer scores than the average of 28 out of 57. How likely
is it that Bird would score only 20 or fewer out of 57 shots if he were
playing normally?

EXAMPLE 1: A BASKETBALL SLUMP?

We can set up the computer to simulate a player who makes, on
average, 48% of shots. We then have the computer make 57 attempts
and count how many successes occurred. This is done with the following
commands:

Give a 48 percent chance of scoring a shot (coded as 1).

> bird = [48 1; 52 0];

Simulate 57 shots.

> a = sample(57, bird);

Count the number of baskets in the 57 shorts.

>  count(a==1)

Due to sampling variability, the result you get by repeating these com-
mands is probably not exactly 28 (the expected number of scores for a
48% shooter in 57 shots).

We can easily have the computer carry out this experiment many
times, and keep track of the number of scores in each experiment:

bird = [48 1; 52 0];

z = starttally;

for expts = 1:1000 7 do 1000 ezperiments
a = sample(57, bird);

baskets = count(a == 1);
tally baskets z;
end

count ( z<=20 )

We see that out of 1000 experiments the simulated normally playing Bird
made 20 or fewer scores out of 57 shots about 40 times. This means that
there is about a 4% chance of a normally playing Bird appearing to be
in a “horrendous slump” when observed for 57 consecutive attempted
shots.

What should we conclude from the data? Is Bird in a slump or not?
All the above analysis tells us is that it is not impossible that Bird isn’t
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in a slump during the playoffs — he might be playing normally. !

So ... is Bird in a slump or not? Although one would like to give
a precise yes-or-no answer, this is not really possible; we can answer
questions only in terms of probabilities.

Statisticians have developed two types of framework for answering
questions such as this one. By the word “framework” we mean a set of
assumptions one makes and questions one asks about probabilities. Each
framework is a kind of standard format for organizing information and
providing quantitative answers to probability questions.

One type of question to ask about Bird’s shooting data is this: “Given
our observed data, what is the probability that Bird is in a slump?” This
type of question is addressed by the Bayesian framework which we will
explore in Chapter ?77.

For now, though, we will work in the hypothesis testing framework.
This framework is motivated by a simple situation in logic. Suppose
we have a hypothesis H, for example, the hypothesis that “Bird is in a
slump.” If this hypothesis were true, then we expect a certain conse-
quence: “Bird will shoot well below his normal 48% rate.” This conse-
quence itself implies something: “Our observed data will show that Bird
scores only about 20 shots out of 57 attempts.” We’ll label the quoted
statement D since it says what our Data will be if the hypothesis H is
true. D is the consequence of our hypothesis H. If H is true then D
will be true. A shorter way of saying this is H implies D or, in symbolic
form, H — D.

Although the statement H — D may itself be perfectly true, this
does not mean that H is necessarily true. It just means that if H were
true then D would be true. In practice, we don’t know whether H is
true. We want to find out whether H is true by examining our data D.

Our situation in statistical inference is that we observe some D and
wish to infer something about the truth of H. Students of logic have
learned that H — D does not at all mean that D — H. For example,
the following statement is quite true: “H: You are outdoors in winter
in Minnesota implies D: You will be cold.” But, the fact that you are
cold does not necessarily imply you are outdoors in Minnesota in winter.
You might be in Alaska or even in Florida during a cold snap.

'Further reflection on this sitution suggests a related problem. Suppose you simu-
late a normally playing Bird for an entire season and look to see whether there occurs
a sequence of 3 or more games where he is scoring very low, say below 30%. You will
find out that it is almost certain that Bird will have such a sequence. This is good
for reporters, who just by chance fluctuation will always end up occasionally being
presented with a player in a “slump.”
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The statement H — D does however allow us to say one thing with
certainty: notD — notH. If you are not cold then certainly you are not
outdoors in winter in Minnesota.

This logical relationship between a hypothesis H and data D means
that using data can in logic only refute a hypothesis. If the data are
inconsistent with the hypothesis then we know that the hypothesis is
wrong. If the data are not inconsistent with the hypothesis then ... well,
the hypothesis might be right or wrong, we just don’t know.

The hypothesis-testing framework has several components.

e The Null Hypothesis Hy. This is a hypothesis that we will test. It
should be something that it would be interesting to reject, typically
a statement of the form “nothing is going on.” We will check to
see if the data are consistent with the Null Hypothesis. If they are
not, we will conclude that the Null Hypothesis is false. “Bird is
shooting normally” is an appropriate Null Hypothesis.

e The test statistic. This is the way that we summarize our data. In
the basketball example, our test statistic is the fraction of scores
our of 57 attempts. It is important to remember that the test
statistic is not simply “the scoring rate” but is “the scoring rate
out of a sample of size 57.”

e The p-value. This is a probability. If the Null Hypothesis Hy is
true, then there is a certain probability that, of all the data that
we might have observed, any single data set would disagree with
the Null Hypothesis to the same extent as the data we actually
observed. In the basketball example, we found that by generating
samples according to the Null Hypothesis that Bird is shooting at
48%, there is about a 4% probability that Bird would make 20 or
fewer baskets out of 57 attempts. The p-value is therefore 4%.

If the p-value is very low, one typically rejects the Null Hypothe-
sis. The standard in scientific research is that the p-value should
be below 5% in order to be justified in rejecting the Null. This is
a valuable guideline, but there is nothing magic about the number
5%. If the p-value is above 5%, the Null Hypothesis may still possi-
bly be false — it’s just that our data doesn’t justify this conclusion
at the level scientists would typically find convincing.

Later, we will introduce some other terms relating to the hypothesis-
testing framework: significance level, type I error, type II error, power.
For the present, we illustrate some typical situations involving p-values
and hypothesis testing.
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3.2 Some Examples of Hypothesis Tests

EXAMPLE 2: TESTING A DIFFERENCE IN PROPORTIONS

“New polls show Ross Anderson surging in support in his campaign
for President. Details at 11.” This teaser for the 11 o’clock news does
its job: you stay tuned to the television until 11, hoping for more infor-
mation. If Anderson does stay in the campaign, he will split the political
right and the centrists may win the election.

At 11:15 the details of the polls are given on the news show. Ten
days before the election, Anderson had support of only 8%. Now, five
days later, a new poll shows him at 11%. The news anchor reports that
the polls were based on a random sample of 500 registered voters. Video
footage is played of a spokesman for the Anderson campaign saying that
the rapid growth in Anderson’s support is due to increasing voter dis-
enchantment with the big-party candidates as they face up to having
actually to make a choice. The news anchor speculates that these “im-
portant” and “breaking” poll results show an “unprecedented growth in
support for Anderson by almost 50%” and may herald a “new era in
American politics.” The next day, the Sunday talk shows are filled with
discussion of this news. Even Bill Will, one of the most well respected
commentators, says, “Something is definitely up. These polls are accu-
rate to within plus or minus 2.5%, so the growth in support of 3% must
be real.”

You have a skeptical attitude. Nothing of significance or interest has
happened in the campaign during the past week and voters are com-
pletely disinterested. You have a null hypothesis: the voters’ level of
support for Anderson hasn’t changed in the past week. Are the data
consistent with this hypothesis? You decide to check.

If your Null Hypothesis is correct, then the two polls are really two
samples from the same population: nothing changed from the first poll
to the second except that different random people were selected for the
poll. Five-hundred randomly selected voters were polled each time, with
40 indicating support the first time and 55 the second time. Altogether,
that makes 1000 people, of whom 95 supported Anderson: a 9.5% sup-
port rate. Taking this rate as indicating the voters’ level of support for
Anderson, you use resampling to simulate the polling process, and you
look to see how often two polls will differ by 3 percent or more even
though the underlying support rate stays constant at 9.5%. The file
pollchange.m has the following lines:
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voters = [9.5 1; 90.5 0]; % a 9.5 percent support rate.
Ntrials = 1000;
z = starttally;
for trials = 1:Ntrials
% Conduct the first poll
polll = sample(500, voters);
% Now the second poll
poll2 = sample(500, voters);
/4 Compute the change in support level
change = proportion(poll2 == 1) - proportion(polll==1);
tally change z ;
end
disp(’p-value of >= 3} growth in support:’)
proportion(z >= 0.03)

Running the script

> pollchange = ans: 0.052

The estimated p-value of the observed difference of 3 percent in Ander-
son’s support is 0.052. This means that there is a reasonable chance
(5.2% to be precise) that the second poll would show an increase of 3
percent or more in support compared to the first poll even if the Null
Hypothesis were true.

What should you conclude? Since the p-value is not less than 5
percent, you would be justified in saying that the data do not cause you
to reject the Null Hypothesis. But the computed p-value is awfully close
to the conventional 5% cut-off for justifying the rejection of the Null. So
you have little reason to insist that rejecting the Null is unreasonable.
(Given the other information that you have — that nothing has changed
in the campaign — it’s probably sensible to wait for more information
before concluding that there is a “new era in American politics.”)

This situation of marginal p-values is quite common in hypothesis
testing. Remember, that even if the Null Hypothesis is really true, one
time in ten your data will produce a p-value less than 10 percent.

Many people are troubled by this situation, and want their data to
lead to definite yes-or-no statements about the world. But it is frequently
the case that the data are not so clear. One thing the marginal p-value
does tell us in this case is that we really should have collected more data
in the first place. We’ll see an discussion of this in Example 77.
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Here is another thing to think about: If you take the point of view

that the news interest in the polls would have been the same if Ander-
son’s support had fallen by 3 percentage points, then the p-value should
have been computed by counting any change whose absolute value was
3 percent or larger, that is:
> count( abs(z) >= 0.03 )
This revised computation gives a p-value of 0.11, which is not so marginal.
The two cases, 1) considering an increase only, or 2) considering either
an increase or a decrease, are called a one-tailed test and two-tailed test
respectively. (One can also have a one-tailed test where only a decrease
is considered.)

Which is better, a one-tailed or a two-tailed test? There is no hard-
and-fast answer. The two-tailed test is more conservative, producing
larger p-values. The one-tailed test, when appropriate, is more powerful.
We’ll return to this issue in Example 7?7 when we discuss the concepts
of the alternative hypothesis, power, Type I error and Type II error.

EXAMPLE 3: LABOR TROUBLE: DIFFERENCE IN TwO MEANS

Northworst Airlines is having labor difficulties. Six years ago they
almost went bankrupt. Now, they are making huge profits and top
management is giving itself multi-million dollar bonuses. Unfortunately,
management didn’t remember that these profits are due to low pay rates
for mechanics, pilots, flight attendants and others who accepted deep
pay cuts during the lean, almost-bankrupt years. The workers want a
pay increase.

One way workers might be putting pressure on management is by
causing delays — making flights reach the destination late so that cus-
tomers become angry and switch airlines. Last month, a mechanics’
union spokesman threatened management: either take negotiations seri-
ously or the workers will start causing delays.

Northworst management has some data showing how late (in min-
utes) each flight is. To see if the union is making good on its threat, you
have been asked to compare data from before the threat to data from
last week. (These data and the analysis programs are in airline.m.)

[10 12 -1 82 7 -3 4 196 18];
[-2 71 290 4 102 78 6 125];

beforethreat
afterthreat

(Negative numbers mean that the flight was early.) We can compare the
mean delay before the threat and after.
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> NWdiff = mean(afterthreat) - mean(beforethreat);

ans: 48.1
Delays seem to have increased since the threat.

An appropriate null hypothesis in this case is that nothing has changed

since the union threat was made, and that the before-threat data and the
after-threat data are each random samples from the population of North-
worst arrival times. If we assume that the null hypothesis of no change is
correct, then our best guess about what the population of Northworst ar-
rival times looks like is the combined before-threat and after-threat data.
> nullarrivals = concat(beforethreat,afterthreat);
One reasonable test statistic is the difference between the mean before-
threat delay and the mean after-threat delay. As we saw, this value is
48.1 for the actual data. Now we want to assume that the null hypothesis
is true and examine the distribution of values that the test statistic takes
on. We can do this by resampling from nullarrivals and simulating a
situation where a random sample of 9 arrival times is labeled as coming
before the threat, and a random sample of 8 arrival times is labeled as
coming after the threat.?

z = starttally;

for trials = 1:1000
beforet = sample( 9, nullarrivals);
aftert = sample( 8, nullarrivals);
teststat = mean( aftert) - mean(beforet);
tally teststat z;

end

The array z now indicates the probability distribution of the test statistic
if the null hypothesis is true. We want to see where the actual measured
value of NWdiff falls in this distribution. This is shown in Fig. 7?7, which
was made with the following commands:

histogram(z,’Difference of means under Null Hyp.’);
% Draw in the vertical line from O to 0.012, at 48.1
hold on;

plot( 48.1, 0:.001:.012, ’*’);

hold off;

2We have written the following MATLAB code using the numbers 9 and 8 to
specify the sample sizes. This makes the code easier to read in this one example, but
is bad programming practice in general. It would be better to write the two lines
where sampling is done as:
beforet = sample( length(beforethreat), nullarrivals);
aftert = sample( length(afterthreat), nullarrivals);
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xlabel(’Diff in mean delays (minutes): after - before’)

Figure 1:

Distribution of the test statistic under the
null hypothesis that the before-threat and
after-threat data come from the same distri-
bution. The test statistic is the difference be-
tween the mean of 9 values minus the mean
of 8 values. The value for the actual data is
indicated by the starred vertical line at 48.1.

To compute the p-value, we want to see what fraction of the points
in z are more extreme than NWdiff. In this case a one-tailed test seems
appropriate since we have no reason to think the delay times would be-
come shorter after the union threat. The one-tailed p-value is
> proportion(NWdiff<z)

ans: 0.117

Just to illustrate how a two-tailed p-value would be computed in
this case, we will go through the process involved in the calculation.
First, we have to decide what we mean by “more extreme” when we
say that we want to count the fraction of times that the null hypothesis
produces a test statistic more extreme than those of the actual data. In
this case, since NWdiff is larger than most of the values in the null’s
distribution, we’ll take the right extreme to be Nwdiff. (If NWwdiff were
smaller than most of the values in the null’s distribution, we would take
the left extreme to be NWdiff.)

For the extreme on the other side, we want to reflect NWdiff around
the center of the distribution. NWdiff is displaced from the mean of the
distribution by (NWdiff - mean(z)). Subtracting this from mean(z)
gives us the left extreme. Translating this into MATLAB,

m = mean(z);
if( m < NWdiff )
rightextreme = NWdiff;
leftextreme = m - (NWdiff - m);
else
leftextreme = NWdiff;
rightextreme = m + (m - NWdiff);
end

and the fraction of points outside of the extreme values is

count ( z< leftextreme | z > rightextreme)/length(z)
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In this case, the two-tailed p-value is about 23%.

Since the p-value is so large even for the one-tailed case, we are not
justified in rejecting the null hypothesis. Conclusion: there is no good
reason to think that delays have increased since the threat. (But, even if
we had found a small p-value, indicating that there was an increase that
is statistically significant, we still wouldn’t be able to be sure that the
mechanics have caused the increase; all we can conclude is that there is
an increase.)

It’s not clear that the difference of means is the most appropriate test
statistic to use in this case. Instead, we might want to use the difference
in medians or perhaps the difference in the fraction of flights that are
more than 15 minutes late. Historically, the emphasis on the difference
in means stems from the fact that algebraic formulas are available for
calculating p-values for the difference in means. There are no such for-
mulas for most other test statistics. However, by using resampling it’s
straightforward to compute p-values for most any test statistic; just one
line of the program needs to be changed:

teststatistic = mean(aftert) - mean(beforet);

could be changed to

teststatistic = median(aftert) - median(beforet);

or

teststatistic = proportion(aftert>15) - proportion(beforet>15);

or whatever statistic you prefer. Of course, you will have to use the same
test statistic when computing NWdiff on the actual data. (And, when
computing two-tailed p-values you should continue to use mean(z) to
reflect around the center of the distribution.)

Which test statistic is most appropriate depends on what you think
it is important to measure. If you think that really long delays are prob-
ably genuinely due to weather and other unavoidable factors, there is no
reason for these to have a heavy influence on the results and the median
delay is a better test statistic than the mean delay. If you think that
union workers try to delay flights by 15-30 minutes so that connections
to other flights are affected, then the fraction of delays more than 15
minutes might be the best test statistic.
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There aren’t very many data points in this record, and that can make the
results of the calculations unreliable, particularly for statistics which count
only a few of the data points. See Example ?? for an analysis of this.

CAUTION!

In the above example, we resampled with replacement from a Null
Hypothesis data set that consisted of both the before-threat and after-
threat data. For theoretical reasons, there is sometimes a small ad-
vantage in sampling without replacement. In the context of the above
example, this is called a “permutation test.” The idea is that we had
altogether 9 + 8 = 17 samples of data. Under the Null Hypothesis, any
of these samples could have been collected before the union’s threat, or
after. To compute the distribution of the test statistic under the Null
Hypothesis, we can randomly shuffle the 17 samples and pick 9 of them
without replacement to call the before-threat “data.” The remaining 8
samples are then the after-threat “data.” Here’s how to carry out the
operation in the Resampling Stats software:

% for a permutation test
/4 construct the null hypothestis
nullarrivals = concat(beforethreat, afterthreat);
z = starttally;
for trials = 1:1000
/4 randomize the order of the data points
newdata = shuffle(nullarrivals);
/4 pick out the first 9 of these to be the
% simulated before-threat data
beforeinds = 1:9;
beforet = newdata(beforeinds);
/% take the remaining ones to be the
% simulated after-threat data
aftert = exclude(newdata, beforeinds);
/4 mow do the test statistic, and so on...
teststat = mean(aftert) - mean(beforet);
tally teststat z;
end
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EXAMPLE 4: TESTING A DIFFERENCE IN PAIRED DATA

Here is a very limited data set on the ages of husbands and wives:

husbands = [25 25 51 25 38 30 60 54 31 54 23 34 25 23
19 71 26 31 26 62 29 31 29 35];

wives = [22 32 50 25 33 27 45 47 30 44 23 39 24 22
16 73 27 36 24 60 26 23 28 36];

The corresponding elements in the two arrays are from a married couple.
For example, the first married couple consists of a man of age 25 and a
woman of age 22. In the second couple the man is 25 and the woman
is 32. (These data and the associated programs in this example can be
found in marriage.m. If typing in the data by hand, type each set of
data on a single line.)

A sociologist or an insurance company might be interested in ex-
amining such data to see if wives are systematically younger than their
husbands. One way to do this (which we will see below is inappropriate
for the husbands-and-wives data, but which is appropriate in many other
cases) is to see whether the mean age of husbands is different from the
mean age of wives. For these data
> agediff = mean(wives) - mean(husbands)

ans: -1.875
the wives are about 2 years younger than the husbands.

We want to know if this measured difference is statistically significant.
That is, do these data provide evidence to refute the null hypothesis
that husbands and wives do not differ systematically in age. If this null
hypothesis is correct, then the wives and husbands data really come
from the same distribution of data.? We can simulate this by combining
the two data sets into one, and then resampling from this larger dataset.
This forces our resamples to satisfy the null hypothesis.

First, we note the number of points in our data set:
> length(wives) = ans: 24
We’ll concatenate the two data sets into one, and draw new samples from
this combined data set.

/4 create the null hypothestis distribution

30ther null hypotheses can be imagined. For example, we might hypothesize that
husbands and wives have the same mean age, but that the standard deviation is differ-
ent for the two groups. In this case the data don’t come from the same distribution;
they come from two different distributions that have the same mean but different
standard deviations. For ways of testing these hypotheses, see [?].
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nullhypothages = concat(husbands, wives);
z = starttally;
for trials = 1:1000
/% we sample data from the null hypothesis distribution
wifedata = sample( 24, nullhypothages);

husbdata = sample( 24, nullhypothages);
teststat = mean(wifedata) - mean(husbdata);
tally teststat z;

end

% Compare z to the wvalue of -1.875 found

% in the original data.

% Do a two-tailed test.

pvalue = proportion(z < -1.875) + proportion(z > 1.875)

We find a high p-value (0.625) indicating no systematic difference in the
ages of husbands and wives.*

The above is a valid calculation which is appropriate for many data
sets, wherever one wants to know whether two groups differ systemati-
cally from one another. In this case we use the mean as the test statistic,
but the program is easily modified to work for other test statistics such
as the median or standard deviation. Similarly, the two-tailed test could
be changed to a one-tailed test by modifying the last line of the program.

Although the calculation does address the question of whether hus-
bands as a group are different in age than their wives as a group, this
is not the question in which we’re interested. Instead, we want to know
whether, within each couple, the wife is systematically different in age
than the husband.

This is an example of a paired comparison. Paired comparisons are
most frequently encountered in before-and-after experiments where a
measurement is made on a subject, then some treatment is applied to
that subject, then a second measurement is made. Since the same subject
is involved in the two measurements, they are paired.

In our case the subject is a married couple. We are making a pair
of measurements on each subject: the age of the wife and the age of the
husband. Since we’re interested in the age difference within a couple, we
compute

4This example again violates good programming style by using the number 24
instead of length(wifedata) and length(husbanddata). In addition, we've used the
number -1.875 instead of referring directly to the variable agediff which contains the
value of the test statistic on the original data. We do this because the logic of setting
left and right extremes for the two-tailed hypothesis test is a little bit complicated.
See page 77 for an example of how this logic might be programmed.

{ I
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> agediffs = wives - husbands;

As described in Step 7?7 in Appendix 7?7, this commands computes the
difference between the wife’s and husband’s age within each couple.
Then, we can average this intra-couple difference over all of the cou-
ples.

> meandiff = mean(agediffs)

The result is -1.875, exactly the same as in the unpaired case! (If you
remember about the “associative property” of addition and subtraction,
and the “distributive property” of multiplication, it’s easy to see why
the difference of the means should be the mean of the differences.)

The important distinction between the paired and unpaired tests is
not in the value of the test statistic, but in the manner in which statistical
significance is calculated. When we did the unpaired calculation we set
our null hypothesis to be that the age of each husband and each wife
is randomly selected from a single distribution. According to this null
hypothesis, a 73-year old wife is equally likely to be married to a 23-year
old husband as to a 71-year old husband. This is obviously not the case.

For the paired calculation we respect the fact that the husband and
wife in a married couple tend to be similar in age; our null hypothesis
is that of the two ages for each couple, one is randomly assigned to the
husband and the other to the wife. An easy way to implement this null
hypothesis on the computer is to compute the age difference between wife
and husband within each couple, and then resample by multiplying each
age difference by either 1 or -1 randomly chosen. When multiplying by
-1, we are effectively exchanging the ages of the wife and husband within
each couple. Each resampled data set consists of all of the original data’s
age differences, but in a randomly selected set of couples the husband’s
and wife’s ages are swapped.

z = starttally;
for trials = 1:1000
signs = sample(length(agediffs), [-1 1]);
teststat = mean( signs .* agediffs );
/4 Note: the . in .* means to use ordinary
/% element-by-element multiplication
tally teststat z;
end
pvalue = proportion(z<= -1.875) + proportion(z>rightextreme)

The p-value for the paired test is computed to be about 0.06 — which
indicates a marginal degree of statistical significance for the finding that
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wives are about 2 years younger than their respective husbands.

3.2.1 Comparing two distributions

The next two examples show some approaches to exploring whether your
observed data match a given probability distribution.

EXAMPLE 5: ROLLING A DIE, REVISITED

Back in Example 1, we simulated rolling a die 6000 times. Since
the outcomes of a single die are the numbers [1 2 3 4 5 6] with equal
probability, each of the outcomes should appear roughly 1000 times. Of
course, each value didn’t appear exactly 1000 times because the sample
is being drawn at random. The numbers we got in Example 7?7 were
Outcome 1 2 3 4 5 6
Observed Frequency | 1014 958 986 995 1055 992
Expected Frequency | 1000 1000 1000 1000 1000 1000

The question we want to answer here is this: are the observed results
of the sampling so far from what is expected that the difference is too
great to be accounted for by random sampling variability?

The question can be addressed by a hypothesis test in which the null
hypothesis is that the observed frequencies do indeed match the expected
frequencies and that any difference between the two is due solely to sam-
pling variability. To carry out the hypothesis test we need a test statistic.
The one we will use is the size of the difference between the expected
frequency and the observed frequency, summed over all the outcomes.
Since in some cases the observed frequency is higher than the expected
frequency and in other cases it is lower, we’ll use the absolute value of
the difference to measure the size of the difference.
> observed = [1014; 958; 986; 995; 1055; 992];
> expected = [1000; 1000; 1000; 1000; 1000; 1000];
> result = sum( abs(observed - expected ))

ans: 23

Now, the question is whether 23 is inconsistant with the null hypoth-
esis. To answer this question, we’ll generate many trials and check to see
how often the size of the difference between the observed and expected
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frequencies is bigger than 23. The file DIETEST.M is an m-file script
containing the following commands:

expected = [1000; 1000; 1000; 1000; 1000; 1000];
z = starttally;
for trials = 1:100
rolls = sample(6000, [1 2 3 4 5 6]);
observed = multiples(rolls);
teststat = sum( abs( observed, expected ) );
tally teststat z;
end

result = proportion(z > 23);

Executing this script, we get
> dietest = ans: 0.47
Approximately 50% of the time, the sampling variability produces a
difference between observed and expected frequencies of more than 23.
Thus, we have no reason to reject the null hypothesis.

If you have studied statistics previously, you may be familiar with
the x? (“chi-squared”) statistic. This test statistic can be computed as

sum( ((observed - expected)."2)./expected )

Using x? as a test statistic we again find that there is no reason to reject
the null hypothesis. (x? is traditionally the test statistic of choice in the
type of situation in this example. When some of the expected frequencies
are much smaller than others, x? tends to weigh each of the outcomes
equally, whereas the sum of absolute differences puts more weight on the
more likely outcomes.)

Note that we’re not testing the computer random number generator
here, since the same random number generator that was used to create
the original data is also creating the simulations we use for the hypothesis
test. Instead, this example simply shows a technique for comparing a set
of observed frequencies to some expected frequencies. But rest assured
that the generator has been thoroughly tested, both by comparing it
to other computer random number generators and by using tradition
statistical tests such as x2.
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EXAMPLE 6: GRADE INFLATION

The legislature of a fictional eastern state has become concerned with
grade inflation, and particularly the tendency for average grades at East-
ern State University to increase each year at the same time as there is
a perceived decrease in the skills of graduating students. To end this
problem a new law has been passed, the “Eastern State Educational
Standard Evaluation Statute,” or ESESES, which stipulates in part:

§17. Grades shall be assigned by each professor for each
student based on the student’s performance on accepted eval-
uative criteria without reference to the performance of the
class as a whole.

§18. The distribution of grades in each class shall conform
to the standard distribution set out in §20 of this statute.

§19. State University faculty whose class grade distribu-
tion substantially violates §18 of this statute shall be subject
to administrative correction up to and including removal from
office.

§20. The standard distribution of grades in each class
shall be the following:

A B C D
15% 35% 40% 10%

[Ed. Note: This corresponds to a Grade Point Average
(GPA) of 2.55.]

This is a difficult statute to comply with. On the one hand, §17
forbids grading on a “curve.” (Grading on a “curve” means that a fixed
fraction of students gets A, another fixed fraction gets B, and so on.)
On the other hand, §18 says that in the end the grades awarded must
somehow align themselves perfectly with the curve specified in §20.

The state Attorney General, when prosecuting faculty, has defined a
“substantial violation” to be a difference of 0.5 in the class’ mean GPA
from the legislatively prescribed class GPA of 2.55. This means that any
professor teaching a class the average of which is above 3.05 or below
2.05 is subject to being fired.

A young statistics professor has received an administrative complaint.
The grades in her early-morning class of 10 students were 3 Cs, 3 Bs and
4 As, giving a class GPA of 3.10. In responding to the complaint she
wrote:
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“The ESESES statute needs to be understood in a statistical context.
Insofar as students are randomly assigned to a class, and insofar as the
professor assigns each grade independently as required in Section 17, the
class’ GPA will be a random variable. By chance fluctuation, the GPA could
be substantially different than the legislature’s target of 2.55, but possible
not be significantly different. To illustrate | have used the Resampling Stats
software to simulate the case where students are drawn randomly from a
population that exactly matches the legislative standard. [The program is
in gpadist.m.]

classsize = 10;
% the legislatively mandated distribution of grades
standard = [.15 4; .35 3; .40 2; .10 1];
z = starttally;
Ntrials = 1000;
for trials = 1:Ntrials
class = sample(classsize, standard);
teststat = mean(class);
tally teststat z;
end
res = proportion( z > 3.05 | z < 2.05);

“For my classsize of 10 students, this calculation indicates that in 8%
of classes where the individual students’ grades come from a population
that complies exactly with the mandated standard there will nonetheless be
an apparent violation of the Attorney General's standards. Another, similar
calculation shows that the two-tailed p-value for my class’ mean GPA of
3.10 is only 5.5% and therefore within the statistically acceptable bounds
for compliance.

“Note that the Attorney General's criterion relates to the ‘substantiality’
of a GPA difference: whether it is big enough to be of interest. My use of
the word ‘significance’ in its statistically correct meaning relates to whether
the measured difference is big enough to be reliably discernable from no
difference at all. Given the size of my class, the difference in GPA from the
mandated value is too small to conclude that | have violated the legislative
standards.”

To analyze the professor’s case it is worthwhile to point out the paral-
lels between the hypothesis-testing framework and the well known stan-
dards for trial in American courtrooms:

e “Innocent until proven guilty.” The professor is saying that the null
hypothesis should be that she has complied with the legislatively
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prescribed grade distribution. Only if the data strongly indicate
that the null hypothesis should be rejected — that is, if the p-value
is very small — should she be found guilty.

e Guilt must be proved “beyond a reasonable doubt.” Even if the
null hypothesis is true (that is, the professor is innocent), there is
some probability of the observed evidence. This probability is the
p-value. In order to reject the null hypothesis of innocence, the
p-value must be very small — beyond a reasonable doubt.

Note the strategy used by the professor in computing the p-value. She
had two sets of numbers: one is the grade distribution specified by the
state legislature, the other is the 10 grades in her own class. To compare
these two sets, she reduced each to a single value, the mean of the set.
This is appropriate in this case because the Attorney General defined
compliance in terms of mean GPA.

More generally, one might like to know whether the observed distri-
bution of grades in the class corresponds to the distribution mandated
by the state legislature. This problem is identical in spirit to the one
examined in Example 7?7, where we compared the frequencies of the ac-
tual outcomes of die rolls to those expected theoretically. In the case of
the grade standards, requiring that the distribution of grades match the
legislative standard is more restrictive than requiring only that the class
GPA match — not merely must the mean grade meet the standard, but
also that there be the required number of A’s, of B’s, of C’s and of D’s.
But, since in §17 of the statue it says that the professor cannot simply
have a grade quota — each student must be graded individually. This
means that there will be some fluctuations in the number of A’s, B’s, C’s
and D’s, depending on which particular students happened to be in “ran-
dom sample” that composes the class. So, instead of giving a yes-or-no
answer to the question of whether the class’ grades match the standard,
we need to compute a test statistic that quantifies the mismatch, and
calculate the p-value of this test statistic under the null hypothesis that
the class’ grades do indeed come from a population matching the legisla-
tive standards. As discussed in Example 77 two relevant test statistics
are the sum of absolute deviations from the expected number of grades
of each type, and the x? statistic. The following program calculates the
sum of absolute deviations:

classsize = 10;
/% The legislated distribution of grades
standard = [.10 1; .40 2; .35 3; .15 4];
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/% This give the expected number of each letter grade
/% in the same order as standard
expectednum = classsizex[.10 .40 .35 .15];
z = starttally;
for trials = 1:1000
% generate a simulated class
simclass = sample(classsize, standard);
% compute the observed number of grades of
% each type
observednum = multiples(simclass, [1 2 3 4]);
teststat = sum( abs( observednum - expectednum ) );
tally teststat z;
end

(The above script is found in gpa2.m.%)

After running the script, the tallying variable z contains a sample
from the distribution of the test statistic under the null hypothesis. The
value of the test statistic for the actual class data (0 D’s, 3 C’s, 3 B’s, 4

A’s) is
> sum(abs([0; 3; 3; 4] - expectednum))
ans: 5

The one-tailed p-value is
> proportion(z >= b5)

ans: .402
The conclusion: there’s no reason to believe that the professor’s grades
are not a random sample from the distribution specified by the state
legislature.

When using test statistics like the sum of absolute deviations or x?2,
the test is typically one-tailed, since any deviation from the expected
numbers will lead to a positive value for the test statistic. The larger
the value of the test statistic, the more evidence that the observed dis-
tribution is not the same as the expected distribution. There is one case,
however, when you might be interested in very small values of the test
statistic; when you suspect that the observed and expected distributions
match too closely. This can be an issue, for example, when investigating
scientific fraud and the fabrication of data.

°Tt is better style to write the program a bit differently. One should write
expectednum = classsize*standard(:,1);
which uses the first column of standard to compute the expected number of grades
in each type. Similarly, one should write
observednum = multiples(simclass, standard(:,2));
This avoids mistakes arising from typing the same information in two different places.
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All of the calculations here are based on the assumption that the students
in the class represent a random sample of all students. This is unlikely to
be the case. If a subject is difficult, then better students will tend to take
the classes in that subject. If a class is offered in the early morning, then
more motivated students tend to take the class. Just for these reasons,
the ESESES statute is flawed. But this doesn’t mean that the calculations
shown here are useless: the sampling variability puts a lower bound on how
much the grade distribution can be expected to differ from the legislative
standard. If the actual deviation is larger than the deviation expected from
sampling variability, we then need to move on the the issue of what caused
the larger-than-expected deviation.

CAUTION!

For example, suppose there is a class at the State University with
100 students, and that the grade distribution was 149 A’s; 351 B’s, 400
C’s and 100 D’s. This matches the legislative standard almost exactly,
but perhaps it is evidence that §17 of the statute is being violated. The
sum of absolute deviations is easy to calculate: there is one too few A’s
and one too many B’s, so the sum of absolute deviations is 2. Running
the above script again, but setting classsize to 100, we get a sample
from the distribution of the test statistic under the null hypothesis. We
compare this to the observed value of 2 for the test statistic:
> proportion(z <= 2)

ans: 0.016
The low p-value indicates that the recorded grades are suspiciously close
to the standards, and suggests (but does not prove absolutely) that there
was a grade quota that was adjusted so that the numbers didn’t exactly
match the standard.

We certainly do not advocate cheating and falsifying data, but you
should be aware that a clever cheater will adjust things so that a test
like this won’t give evidence for cheating. In the case here, a reasonable
amount of adjustment is
> median(z)

ans: 12
So, a clever cheater will arrange things so that the sum of absolute de-
viations is around 12.
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3.2.2 Independent resampling of two variables

When examining the relationship between two variables, we typically
make a measurement of both variables for each case. A typical null
hypothesis is that there is no relationship between the two variables.
In order to generate resampled data that is consistent with this null
hypothesis, we can resample separately from each of the variables. This
is shown in the next example.

EXAMPLE 7: TESTING A CORRELATION

We revisit the stork and baby data. In Example 7?7 we were concerned
with the confidence intervals on a statistic, r2, that describes how well
the data are modeled by a straight line. Here, we’ll consider the situation
from the perspective of hypothesis testing. Our null hypothesis is that
there is no relationship between births and the stork population. As a
test statistic we will again use 72, although we could use other statistics
such as the slope of the line that best fits the data.

To implement the null hypothesis, we resample independently from
the stork data and from the baby data. Doing so means that our re-
sampled data avoids any real correlation between the two data sets
and allows us to test whether the observed degree of correlation —
r?2 = 0.89 as found in Example ?? — could occur by chance. The pro-
gram storkscorr.m is almost exactly the same is in Example 77, but
the three lines in the original program that randomly selected pairs of
data points

inds = sample( Ndata, 1:Ndata );
stks = storks(inds);
babs = babies(inds);

are replaced with independent samples from the stork data and births
data separately.

stks = sample( Ndata, storks );
babs = sample( Ndata, babies);

A one-tailed test is appropriate here, since large values of 72 indicate
that there is a correlation, but small values of 2 do not. The p-value
comes out to be about 1%, indicating that the null hypothesis can be
rejected. This is essentially the same conclusion we reached from the
confidence interval calculation in Example ?77.
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3.2.3 Adjusting for multiple tests

In many studies, one has many different variables available, and perhaps
many different test statistics. It is tempting to search through the data,
looking for those variables that show something interesting. This is a
legitimate method of data exploration, but great care must be taken
when computing and interpreting the p-values in such situations.

EXAMPLE 8: DISCOUNTING MULTIPLE COMPARISONS

You have just read in your fictional local newpaper a fascinating
study that shows that boys are different from girls in their performance
on tests of spatio-temporal reasoning. In the study, scientists took a
randomly selected group of 3000 children, half boys and half girls, and
subjected them to a battery of 15 tests. The score on each test was
the time taken to perform a task involving spatio-temporal reasoning.
Some of the tasks were: assembling a small jigsaw puzzle; sorting differ-
ently colored marbles according to size; building a specified shape out of
blocks, and so on. In both the jigsaw puzzle task and the marble-sorting
task, girls were faster than boys. The one-tailed p-values for these two
tests were 0.03 and 0.04 respectively. The other tasks showed interesting
patterns also, but none that reached statistical significance at a level <
0.05. In particular, in none of the 15 tests did the boys perform faster
than the girls at a statistically significant level.

The newspaper touts this study as “scientifically rigorous and con-
vincing with a high level of statistical significance.” Certainly p-values
of 0.03 and 0.04 seem to be compelling. It’s also interesting that both
tests point in the same direction: girls being faster than boys. One of the
scientists in the study is quoted as saying, “The fact that two tests sepa-
rately give highly significant results, means that the overall significance
of the study is wildly significant, at a level of p < 0.0012.”

You are not so sure. If 15 tests were done, it doesn’t seem quite
right to focus on those 2 tests that gave the strongest results. With 15
tests, it seems that there is a good possibility that at least one of the
tests would prove significant even if there is no real difference in spatio-
temporal reasoning. But is it likely that two tests would be significant
and in the same direction? What about the fact that none of the tests
were significant in favor of boys’ being faster?

Let’s answer these questions with a simulation. We note that if the
null hypothesis is true, the one-tailed p-value is a random variable uni-
formly distributed between 0 and 1. (Did you think that the p-value will

{ I
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tend to be close to 1 if the null hypothesis is true? Not at all.)

Here is a thought experiment to show that the above statement is
true. Imagine that there is a hidden switch that controls whether the null
hypothesis is true or false. We carry out a study by collecting data and
computing single test statistic, for instance the mean difference in time
to complete the task for boys versus girls. We'll call this test statistic
the “observed result.”

Now, set the switch to TRUE and collect another 100 values of the test
statistic. (In the previous examples in this book, we have done this by
simulation and resampling.) The 100 values will vary randomly from one
another, but they all reflect the distribution of the test statistic under
the null hypothesis. We will call the 100 numbers the “null distribution.”

The one-sided p-value of your observed result can be estimated by
counting how many of the numbers in the null distribution are smaller
than our observed result. If none of them are smaller than the observed
result, the p-value estimate is 0.00. If 1 of them is smaller, the p-value
estimate is 0.01, and so on. If all of them are smaller, the p-value estimate
is 1.00.

Suppose now that the switch had been set to TRUE when collecting
your observed result. Then all 101 values of the test statistic are drawn
from the same probability distribution. The situation is analogous to
putting 101 different numbers in a hat, and drawing one of the numbers
at random to be your observed result. The probability that the drawn
number is the smallest of all is T%T' The probability that the drawn
number is the next-to-smallest is ﬁ, and so on. So, if the null hypothesis
is true, each of the possible p-values from 0 to 1 is equally likely.

In our simulation, we will generate 15 p-values uniformly distributed
between 0 and 1. We'll find the probability tha there is one value less
than 0.03 and one less than 0.04, and that none of the 15 p-values are
greater than 0.95. (A p-value of 0.95 from a one-sided test that girls are
faster than boys corresponds to a 0.05 p-value that boys are faster than
girls.)

Here is the program in manytest.m:

z = starttally;

for trials = 1:1000
pvalues = uniform(15,0,1);
%4 sort from smallest to largest
pvalues = sort(pvalues);

goodenough=pvalues(1)<.03&pvalues(2)<.04 & pvalues(15)<.95;

tally goodenough z;
end
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proportion(z)

The only new programming technique here involves sorting. We sorted
the randomly generated p-values from smallest to largest so that we can
easily find the smallest and second smallest p-values to compare them
to 0.03 and 0.04. We also check whether the largest p-value is less than
0.95; if this is true then all of the p-values are less than 0.95.

The result: the p-value for the overall reported results of the study
is 0.06. This is not as significant as the 0.03 reported for the best test
and quite different than the 0.0012 reported. If you take the point of
view that all of the tests should have been done two-sided, the overall
p-value should be 2 x 0.06 = 0.12 which is not very compelling evidence
for a difference between boys and girls. The two-sided is computation is
appropriate, for instance, if you don’t know ahead of time that girls will
be faster than boys, but would be equally willing to consider significant
a finding that boys are faster than girls.

When embarking on a long study, keep track of how many hypothe-
ses have been tested and make your criterion for rejection of the null
hypothesis in each case more rigorous. A simple, but perhaps overly
conservative way of doing this is the Bonferroni correction: reduce the
significance level by an amount proportional to the number of hypotheses
tested. For example, if your study will investigate 10 hypotheses, and
a 5% significance level is desired, then use a 0.5% level in conducting
the individual tests. A discussion of these issues is contained in many
statistics books, e.g., [?, 7].

Another approach is this: When you have found a hypothesis that
appears worthwhile, go back and collect new data for conducting the
hypothesis test. In many cases, researchers divide their original data set
into two parts. One part is called the training set and is used for exploring
many different hypotheses. The other part is called the testing set and is
used for conducting a new hypothesis test on those few hypotheses that
seemed worthwhile based on the analysis of the training set.

Be wary of research reports where multiple hypotheses have been tested
and no explicit adjustment has been made to the significance level.
CAUTION!
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3.2.4 Sample size and power

The next two examples deal with an important issue in designing studies
or experiments: how many data samples should we collect if we want our
study to be a success. By “being a success” we do not mean exactly that
the study will prove the outcome we want. Honest studies are designed
so that they reflect the world as it actually is and not just the way we
would like it to be. Instead, “being a success” means that our result
should fail to reject the null hypothesis if the null hypothesis is true, and
should lead us to reject the null hypothesis if it is false.

We have already seen how to use p-values to guard against falsely
rejecting the null hypothesis. The common technique of the previous
several examples was to compare the observed value of our test statisic
from the real data to the test statistic from many trials of simulated
data generated in a way consistent with our null hypothesis. We use
this comparison to generate a p-value that describes how likely is our
observed value of the test statistic if the null hypothesis were true. A
very low p-value indicates that the data are inconsistent with the null
hypothesis.

Although p-values help to solve the problem of false rejections a true
null hypothesis, we also face a different problem: we don’t want to fail to
reject the null hypothesis if it is false. How do we design studies so that
they will reject the null hypothesis if it is false? The general strategy is
this: generate simulated data that is consistent with the null hypothesis’
being false. Then compute the p-value of this simulated data.5 We carry
out many such trials, computing a p-value for each of many simulated
data sets. We want the study design — specifically the number of data
samples in our study — to be such that for our simulated data there is a
large probability that the p-value we compute from the simulated data
will be low enough to reject the null hypothesis.

Unfortunately, saying simply, “the null hypothesis is false,” does not
tell us exactly what is true. In order to do calculations, we need a
specific statement about what is true. This specific statement is called
our alternative hypothesis.

If the real world is like our simulations of the alternative hypothesis,
then our simulations should show the probability that our real-world
study will lead us to reject the null hypothesis. This probability is called
the power of the study. We want to set our study’s sample size to be big
enough to make the power close to 100%.

SThere is a twist here: the p-value computation is done by simulating data that is
consistent with the null hypothesis’ being true.
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EXAMPLE 9: DESIGNING A MEDICAL STUDY

You work for a large pharmaceutical company that has developed a
new drug to combat hypertension (high blood pressure). Preliminary
studies have shown that the drug is acceptably safe in humans. Your
job is to design the study that will convince the government’s Food and
Drug Administration (FDA) that the drug is effective.

You are planning a double-blind, controlled study. In this study,
volunteer patients with high blood pressure will be randomly assigned
either to take the new drug or a placebo. Neither the patient nor the
patient’s physician will know whether the patient is taking the drug
or the placebo. At the beginning of the study, each patient’s blood
pressure will be measured. After two weeks on the drug, the patient’s
blood pressure will again be measured and the change in blood pressure
will be recorded. These data will be sent to you for analysis. Only you
know which patients received the drug and which received the placebo.

The question you face is how many patients to enroll in the study.
Because of the risk of side effects from the drug, you want to keep the
study as small as possible. On the other hand, you don’t want the study
to be so small that the results are not statistically significant.

A preliminary study, with 10 subjects, showed that the drug reduces
systolic blood pressure by approximately 14 mmHg.” Unfortunately, the
p-value for that study was .15; not low enough to establish statistical
significance. Let’s assume that the FDA requires a p-value of 0.025 for
a one-tailed test. The FDA presumes that you know in which direction
the drug will act, hence a one-tailed test is appropriate.

From your perusal of the medical literature, you know that in the
hypertensive population from whom the drug is intended, measurements
of blood pressure made two weeks apart — with no treatment — differ
by 0 mmHg on average with a standard deviation of 21 mmHg. You also
know, from previous studies, that the placebo effect applies, and that
giving a placebo will reduce blood pressure by 4 mmHg, on average. We
will use these facts to constitute our alternative hypothesis.

You can approach the problem using a simulation. Here is a pro-
gram (found in file bpstudy.m) that will generate data for N subjects,
and compute the significance level of the difference between the placebo
and control groups. The data are generated to be consistent with the
alternative hypothesis.

"Blood pressure is measured in millimeters of mercury (mmHg). Systolic pressure
is the peak blood pressure after each heart beat.
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function pvalue = bpstudy (N)

% bpstudy (V)

/% simulate the blood pressure study with
% N subjects receiving the drug and

/% N subjects receiving the placebo.

/4 the returned value is the p-value of the
% difference.

% Simulates the before-and-after difference in blood pressure
% generate data for the placebo group
placebo = normal(N, -4, 21);
/% and for the drug group
drug = normal(N, -14, 21);
/% Now compute the p-value of the diff. between the two groups
/% Use a permutation test
observedval = mean(drug) - mean(placebo));
z = starttally;
nulldata = concat(placebo, drug);
for trials = 1:500
pinds = 1:length(placebo);
newdata = shuffle(nulldata);
sampplacebo = newdata(pinds);
sampdrug = exclude(newdata, pinds);
teststat = mean(sampdrug) - mean(sampplacebo);
tally teststat z;
end

/% The observed difference in means is expected to be < 0.
% So we’ll look for trials where z is even more nmegative.
pvalue = proportion(z < observedval);

Let’s try it out with a sample size of 10:
> bpstudy(10) = ans: 0.5520
The result is somewhat random, so let’s try again:
>  bpstudy(10) = ans: 0.1280
The second simulation is quite different from the first. This isn’t a prob-
lem with the number of trials in the permutation method. Instead, it
genuinely reflects the fact that the small population in the study makes
it hard to get a significant result.
We'll try a larger population:
> Dbpstudy(50) = ans: 0.044
> Dbpstudy(50) = ans: 0
It looks like a study involving 50 subjects will give a low p-value but we’re
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not confident that the p-value would be lower than the FDA-mandated
0.025. To make sure, we’ll write a program to carry out many such
simulations for a given size. The following program is in file bppower .m:

function res = bppower (studysize)

4 carry out many simulations

z = starttally;

for trials = 1:100
pvalue = bpstudy(studysize);
tally pvalue z;

pvalue % print out intermediate results
end / because the program is quite slow

%4 count what fraction of studies gave
% a sufficiently low p-value
res = proportion(z <= 0.025);

Each time we run BPPOWER, it carries out 100 simulations of our ex-
periment and reports the fraction of those experiments that gave a suf-
ficiently large p-value to lead us to reject the null hypothesis. Let’s try
a study size of 30 subjects (in each of the two groups):

> Dbppower(30) = ans: 0.32

We see that if we run a study with 30 subjects in each group, there is
about a % probability that the study will be a success. By “success” we
mean this: if the alternative hypothesis is indeed true, then the study
is a success if it leads us to reject the null hypothesis. The probability
that the study will be a success in this sense is called the power of the
study design.

A power of % might be adequate for some purposes, but one wants
the power to be as close to 1 as possible (consistent with real-world con-
straints such as the cost of recruiting additional subjects, and so on).
Let’s try a study size of 50:
> bppower(50) = ans: 0.62
We see that increasing the number of subjects increases the power. Let’s
make it bigger still:
> bppower(70) = ans: 0.78
It seems that with 70 subjects in each group, the power of the study is
roughly 78%. This seems pretty large, but keep in mind that it means
that even if our alternative hypothesis is in fact correct, there is a 22%
chance that our study (with 70 subjects) will fail to reject the null. We’ll
try a much larger study:
> bppower(250) = ans: 1.00
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By trying many different sample sizes, we can find one that gives us the
power we want with the budget we have. (Note: Don’t take that 1.00
exactly literally: it just means that in our 100 trials we didn’t encounter
even a single case of the simulated study failing to reject the null hypoth-
esis. We need to increase the number of studies to have more precision
in our estimate of the power. But remember that this estimate is based
on the assumptions that went into the simulation; these may or may not
be accurate.)

EXAMPLE 10: THE STATISTICAL POWER OF POLLING

The Presidential election has come and gone. Anderson got 9% of
the vote. He didn’t qualify for federal campaign support in the next
election, but he did split the right-wing vote.

On Public Television, Bill Moyers is hosting a round-table discus-
sion about the media coverage of the campaign. The issue is Anderson’s
reported “surge” in support in the last days of the campaign. (See Ex-
ample ?77.) As facts turned out, the surge never materialized. Reporters
have egg on their faces.

A statistician is critical of the reporters: “There was never any reason
to report a surge. The p-value of the reported surge was 11 percent —
no reason to reject the Null Hypothesis of no change in support.”

Cynthia Brokow retorts, “That’s for a two-sided test. The one-sided
p-value was about 5 percent. It’s our responsibility to keep the public
informed and not to suppress information because it doesn’t reach some
ivory-tower threshold for reliability. We gave the raw numbers from the
poll; it’s up to the viewer to figure this out.”

Moyers mediates. “Clearly there’s a problem here. We reported a
story that was wrong and for which, in hindsight, we didn’t have much
evidence. If we reporters can’t digest these statistics, how can we expect
the public to do so? There must be some balance between reporting
the raw facts and reporting only those facts which, with due statistical
consideration, provide a reasonable level of support for the conclusions
they seem to point to.”

Steven Brill, editor of a media watchdog magazine, has a suggestion.
“This is a question of standards and responsible reporting. We have an
obligation to collect enough data to make our results reliable, particularly
when the results are important. The problem is in the size of the poll.
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The polls have to be big enough so that we when claim something as
remarkable as a 3 percent increase in support we have good reason to
believe the data. I don’t care if we make mistakes with claims concerning
1 percent changes in support, but we have to be right when claiming 3
percent.”

Moyers: “Well, how big does such a poll have to be?” All eyes turn
toward the statistician.

The statistician: “This is an example of a sample-size calculation.
We want to make the sample size large enough so that our hypothesis
test has a low significance level against the null hypothesis and a high
power against the alternative hypothesis. As you know, there’s generally
a trade-off between power and significance, and ...”

Moyers interrupts. “Hold on a second. Let’s bring this down to
Earth. I don’t know much about statistics but as a reporter I know that
we want our stories to have a high significance level.”

The statistician: “Sorry. I was using some technical terms whose
meaning doesn’t always correspond well to the everyday meaning of these
words. The null hypothesis is a statement which we are going to reject
or not reject on the basis of our data.”

Reporter: “Like, ‘Nothing much has happened. No change in sup-
port.”

Statistician: “Exactly. The null hypothesis plays the role of the
devil’s advocate. We also have a test statistic — in this case that’s the
fraction of support measured in our poll, or, rather, the change in the
fraction of support between the two polls. And, we have a rejection
threshold that measures what we're interested in. This is a level we set
ahead of time. If our test statistic is beyond the threshold level then we
conclude that the data justifies rejection of the null hypothesis.”

Reporter: “What about the p-value?”

Statistician: “The p-value is something we calculate after we already
have our data. Right now we’re discussing how to design the poll, not
how to analyze the data from the poll.”

Moyers: “So where does the sample size come in?”

Statistician: “The sample size determines where we set our rejection
threshold so that our conclusions are reliable. Imagine that the devil’s
advocate is right and the the null hypothesis is true. Since we’re ran-
domly picking the voters questioned in the poll, it might happen that our
poll results are above the rejection threshold just by chance. So, even if
the null hypothesis is right our poll results might cause us to reject the
null.”

Sam Donaldson: “That’s pretty unlikely.”
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Statistician: “I don’t know how you can say that since we haven’t
yet set either the threshold or the sample size. Of course, you're right
in the sense that our goal here is to set the sample size and threshold so
that the probability of falsely rejecting the null hypothesis is very small.
A false rejection of the null is called a Type I error and the probability
of making such an error — for a given null hypothesis, threshold, test
statistic, and sample size — is called the significance level of the test.
We want a low significance level, that is, a low chance of making a Type
I error.”

Moyers: “How do we find the significance level?”

Statistician: “Since the sample size is what we want to figure out,
first we pick a rejection threshold.”

Moyers: “OK. How do we pick a rejection threshold?”

Statistician: “Bear with me — we’ll come to that in a bit. For
now, let’s assume that you already have the threshold, say a change in
the polls of 1%. This means that if the test statistic — which is the
difference between successive polls — is more than 1%, we will reject the
null hypothesis. We want to make the sample size large enough to make
the significance level small.”

Moyers: “How small a significance level is small enough?”

Reporter from the McLaughlin Group: “50%”

Reporter from CBS news: “25%. We have high standards.”

Reporter from the Christian Science Monitor: “0%. We want to be
right all the time.”

Statistician: “The standard in scientific research is 5%. This means
that if the null hypothesis is true, we’ll make a mistake about one time
in 20. If we set the significance level at 50%, even when nothing is
happening we will have a headline story — albeit wrong — for just
about every second poll.”

National Inquirer: “Exactly. That’s the nature of our business. The
public has a right to know.”

Statistician: “On the other hand, it would be a mistake to insist that
we never make a Type I error for example insisting on a 0% significance
level. Doing so would practically ensure that we would always make
Type II errors.”

Moyers: “Type II errors?”

Statistician: “A Type II error occurs when the null hypothesis is
wrong, but we fail to reject the null.”

Moyers: “That would happen, for instance, if there were a big change
in support from one poll to the next but our rejection criteria were so
rigorous that we refused to conclude that something had changed.”
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Statistician: “Right. What we want to do is set our rejection thresh-
old to make both types of error unlikely. Unfortunately, there is a trade-
off between making the two types of error. For instance, we can lower the
probability of a Type I error by making the rejection threshold harder
to satisfy.”

Moyers: “You mean by saying that we won’t report that there has
been a change in support unless the difference from one poll to the next
is at least 2%, not 1% as previously suggested.”

CBS news: “But that would make it less likely that we’d be able to
report a change.”

Statistician: “Right. That would be good, though, if there really
were no change. You’d avoid a Type I error.”

CBS news: “But what if there were really a change in support?”

Statistician: “Then not reporting it would be a Type II error. As I
said, there’s a trade-off between Type I and Type II errors. If you alter
the rejection threshold to reduce the probability of making one type of
error, you increase the probability of the other type.”

Moyers: “Fascinating. But where does the sample size come in?”

Statistician: “There is one way around the trade-off. We can reduce
the probabilities of both types of error by making the sample size large.”

Moyers: “How large?”

Statistician: “The larger the better. But in order to make the poll
economically feasible, you also want to make the sample size small. So,
T’ll calculate the minimum acceptable size of the sample. First, I need to
compute the probability of a Type I error. What’s your null hypothesis?”

Sam Donaldson: “That there has been no actual change in the level
of support.”

Nina Totenberg: “But what will we be justified in reporting if we
reject the null; only that ‘support has increased.” That’s not a very
strong statement.”

Statistician: “Right. Perhaps you’d rather have a stronger statement.
If your null were ‘support has changed by less than 1%’ then if you reject
the null you’ll be able to make a stronger statement.”

Moyers: “Let’s take ‘less than 1%’ as our null.”

Statistician: “We’ll use a significance level of 10% for the calculation.
Now ... What’s your alternative hypothesis?”

Moyers: “You mentioned that at the beginning. What is that?”

Statistician: “The alternative hypothesis is something that, if true,
would lead you to reject the null.”

Moyers: “Why not just take the alternative to be that the change in
political support was greater than 1%. That’s what we know if the null

{ I
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isn’t true.”

Statistician: “Good point. However, I need a specific hypothesis so
that I can calculate the probability of a Type II error. Is it alright if I
say that the alternative is, "The real change in support was 3%? ”

Tottenberg: “Why not say 2.1%7”

Statistician: “We could. But before deciding, let’s pick an acceptable
error rate for Type II errors. If there really was a change of 3%, how
much chance are you willing to take that you make a mistake and fail to
reject the null?”

Moyers: “That’s difficult to answer. Failing to report something
doesn’t seem like as serious an error as reporting something that is wrong.
Let’s say that we're willing to miss the story 25% of the time.”

Statistician: “OK. I have the information I need. By the way, the
power of the hypothesis test is 1 minus the probability of a Type II error.
That’s 75% in this case and is the probability that we do (correctly) reject
the null when the alternative is true.”

“I'll do the calculations for a case that’s like the Ross Anderson
situation where the background level of support is about 10%.”

The statistician writes a program in Resampling Stats. It can be
found in pollsize.m.

function [thresh, type2rate] = pollsize(samplesize)

% Find the rejection threshold and Type II error rate
% of a test statistic which is the difference between
% successive polls.

backgroundsupport = 0.10;

nullincrease = 0.01;

alternativeincrease = 0.03;

significancelevel = 0.10;

z = starttally;

Ntrials = 1000;

for trials = 1:Ntrials
% simulate the difference of two polls under the null.
polll = sample(samplesize,

[backgroundsupport 1; (l-backgroundsupport) 0]);

poll2rate = backgroundsupport + nullincrease;
poll2 = sample(samplesize, [poll2rate 1; (l-poll2rate) 0])
teststat = (count(poll2==1) - count(pollil==1))/samplesize;
tally teststat z;

end

% compute the rejection threshold you’d have to use to make a
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% mistake at the specified significance level

% since we are testing only for an increase in support, we look
% at the right side of the distribution of z

thresh = percentile(z,l-significancelevel);

% Using the threshold, compute the Type II error rate under the

% alternative hypothesis.

z2 = starttally;

for trials = 1:Ntrials
polll = sample(samplesize, [backgroundsupport 1; (1l-backgroundsupport) 0]);
poll2rate = backgroundsupport + alternativeincrease;
poll2 = sample(samplesize, [poll2rate 1; (1-poll2rate) 0]);
teststat = (count(poll2==1) - count(polll==1))/samplesize;
tally teststat z2;

end

type2rate = count(z2<thresh)/length(z2);

This program will take any sample size and compute the rejection thresh-
old and the Type II error rate. It’s assumed that the significance level
is 10%. We try this out for many sample sizes until we find the smallest
one that gives us a reasonable Type II error rate. Then we just read off
the appropriate rejection threshold.

Statistician: “Let’s try a sample size of 100 (in each poll).
>  [thresh, errorrate] = pollsize(100)

ans: 0.06 0.70
We get a threshold of 6% and a Type II error rate of 70%. ”

Sam Donaldson: “You mean that we won’t say that there has been
a change in support unless the polls have changed by 6%. That’s ridicu-
lous.”

Statistician: “I agree. It means that the sample size is too small.
Let’s try 500.
>  [thresh, errorrate] = pollsize(500)

ans: 0.034 0.570
Now the threshold is 3.4% and the Type II error rate is 57%. This is
still much too high. So let’s try a much larger sample size.
>  [thresh, errorrate] = pollsize(2000)

ans: 0.023 0.230
Good. The Type II error rate is down to 23%, close to the specified value.
The threshold is 2.3%. That seems to fit the bill, but barely. So, this is
the smallest sample size that’s acceptable.”

Moyers: “I notice that you didn’t really use our null hypothesis that
support changed by less than 1%. Instead, you assumed that support
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changed by exactly 1%. Why?”

Statistician: “I wanted to make the computations conservative, so 1
took the worst possible case.”

Moyers: “But how do you know this isn’t too conservative. It’s
awfully expensive to poll 2000 people.”

Statistician: “In order to do the calculation differently, I would need
some more information: under your null hypothesis how likely is it that
the real change is 0%, 1%, and so on. I don’t see how you can possi-
bly know this. But, if you think you do, you might want to contact a
Bayesian statistician, or read Chapter 77.”

Moyers: “Let’s summarize. We now have some standards for this
particular case where we take two polls and want to say whether there is
been a change in support for one candidate. We should use random polls
with at least 2000 voters. If the change in support level is greater than
a threshold of 2.3% we are justified in reporting our results as indicating
a change in support greater than 1%.”

Donaldson: “But what if the measured change in support were greater
than 10%. I'd feel pretty silly reporting only that the change is greater
than 1%.”

Statistician: “True. In fact, you could always make another null
hypothesis — say, the support change is greater than 8% — and com-
pute a p-value for your data against that null. If the p-value is low
enough, you’d be justified in reporting that the change is greater than
8%. Remember, the null and alternative hypotheses here were framed
for the purpose of figuring out how many people to interview in the poll.
Once you have the data in hand, these hypotheses are of no particular
relevance.”

After a pause, the statistician adds: “Please remember that these
results apply only to an increase in support for the underdog. If you
want to report either an increase or a decrease, we need to do a two-
tailed calculation and the sample size would need to be bigger.”




