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Chapter 2: Making Statements with Precision: Con-
fidence Intervals

Whenever you make a measurement it is important to have some idea
of how precise that measurement is. Without information about the
precision of a measurement, it is impossible to know whether the mea-
surement is applicable to the purpose you have in mind. There’s no
point, for instance, in taking the temperature of a possibly sick child if
the thermometer is precise only to within ± 5 degrees; if you measured
100 degrees you would have no way to know if the child were perfectly
healthy or had a possibly fatal disease. The measurement of the dis-
tance between two cities might need to be precise only to a mile or so
for the purposes of planning a driving trip, but might need to be precise
to within a centimeter for the purpose of detecting continental drift or
for predicting an earthquake.

A confidence interval is a standard way of describing the precision
of a measurement of some parameter. There are two common forms
for stating confidence intervals both of which provide exactly the same
information, for example:

• The measurement is 10± 3 , with 95% confidence.

• The measurement will be between 7 and 13, with 95% confidence.

There are three pieces of information in a confidence interval: the lower
bound, the upper bound, and the confidence level. In the above example,
the lower bound is 7, the upper bound is 13, and the confidence level is
95%.



2 Resampling Stats in MATLAB

The confidence level provides information about how sure you are
that the true value of the parameter lies between the upper and lower
bounds. This is not a subjective indication of confidence: one doesn’t
merely substitute the number 95% for the phrase “I’m quite sure.” In-
stead, the confidence interval is calculated using mathematical tech-
niques that insure that the confidence level is objective. This section
shows some examples of how to compute confidence intervals using re-
sampling.

The use of a confidence level of 95% is the convention in science —
other levels can be used but whatever level you use it should always be
stated explicitly. Confidence intervals computed using a smaller confi-
dence level will be smaller than those computed with a larger confidence
level; it is not possible directly to compare two confidence intervals made
at differing confidence levels. Although it might seem best to use a con-
fidence level of 100%, in most cases this would result in a confidence
interval that was meaninglessly big and is more difficult to compute (see
Chapter ??).

Example 1: The Campaign Advisor

States Confidently....

The political advisor to a fringe group’s candidate for President has
news just 10 days before the election. “I’m afraid the latest poll looks
grim, sir. Only 8% of voters support us. We pledged to withdraw from
the election if we appealed to fewer than 10% of voters — perhaps now
is the time to get out of the race.”

Interrupting, the legal advisor opines, “But if we get more than 10%
of the vote, we are guaranteed federal campaign money in the next elec-
tion. I think we should stay in.”

The candidate, Ross Anderson, summarizes, “So if we get out now
we won’t be criticized for splitting the vote and we remain viable for
the next election. But if we stay in and get 10% of the vote, we’ll get
campaign money for next time. [Expletive deleted]. How confident are
you in that 8% figure?”

“Quite confident, sir,” the advisor responds. “The pollsters talked to
500 randomly selected registered voters. Only 40 of them supported us.
That makes ...,” he taps on his calculator, “exactly 8%.”

The above fictional exchange is unrealistic: modern political advi-
sors know enough about statistics to realize that the 8% figure isn’t
completely precise. It is based on a random sample. If a different group
of 500 had been picked the result would have been somewhat different.
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More to the point, there is some probability that a random sample of 500
would show only 8% support even if the true support level were greater
than 10%. The candidate’s question about confidence in the results is
really a question about whether there is any possibility that the true
support level is more than 10%.

Here’s one way to answer that question: collect more data. But the
candidate needs to make a decision about withdrawing now and it takes
time (and money!) to collect more data. The candidate needs to infer
from the data at hand how precise is the 8% figure. So, rather than
actually running several more polls, we use resampling to simulate the
polls. Then we look at how much sampling variability there is in the
simulated polls.

The following commands are in the file poll.m.

pollsize = 500;
voters = [92 0; 8 1]; % The data showed 8% support.

% Code support as 1.

z = starttally; % keep the results in variable z

for trials = 1:1000
poll = sample(pollsize, voters);
% take a random sample.

% This is done with replacement so that

% the sample is being taken from a virtually

% infinite population.

support = count(poll==1)/pollsize;
tally support z;

end

After running this script, the variable z contains 1000 simulations of
polling 500 voters. We can compute the 95% confidence interval by tak-
ing the lower bound to be the 2.5% percentile and the upper bound to
be the 97.5% percentile. Only 2.5% of the values in z are less than the
lower bound, and another 2.5% of the values in z are greater than the
upper bound, making altogether 5% of the values in z that would be
outside of the bounds of the confidence interval.1

� percentile(z, [.025 .975])
ans: 0.058 0.106

1To compute a confidence interval at, say, a 90% confidence level we would set the
bounds as the 5% and 95% percentiles, i.e.,
� percentile(z, [.05 .95])

and likewise for other confidence levels.
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This 95-percent confidence interval suggests some possibility that the
candidate has more than the magic 10% level needed to qualify for federal
funding.

“Those poll data are worthless!” the candidate shouts. “Get me
some solid numbers now!” he demands.

Example 2: Uncertainty in the Mean

A light-bulb manufacturer is designing new packaging for a light bulb.
They need to print on the package how long the bulb will last. To es-
timate this value, they take 10 bulbs from the production line and put
them in a machine which turns them on and off once each hour. When
each bulb burns out, the total number of hours that the bulb lasted is
recorded. The data are:
� data = [ 2103 2786 2543 1987 7 2380 3102 2452 3453 2543];
In presenting these data to consumers, the company wants to give an
accurate portrayal of how long a given bulb will last, but it is under-
standably reluctant to say that there is some chance that the bulb will
burn out almost immediately. Reasoning that customers buy lots of light
bulbs and that what matters is not how long an individual bulb lasts but
how long they last on average, the company decides to print the “Aver-
age Lifetime” of this type of bulb on the package. The average is:
� mean(data) ⇒ ans: 2335.6

This number is sent down to the marketing division to be put on the new
package.

The package’s graphic designer telephones to the research depart-
ment. “Is is alright if we round the number to 2500 hours? That looks
better on the package.” The researcher knows that the number 2335.6 is
not exact, but isn’t quite sure that 2500 wouldn’t be misleading. Saying
2000 hours seems like it would be conservative, but perhaps that is less
accurate than 2500. To find out, the researcher could do some more
bulb-life testing runs, but these take about 4000 hours to set up and run
— about 6 months.

The lifetime of each bulb is a random variable that depends on factors
such as fluctuations in the diameter of the filament wire. This random
variable has a distribution: we have 10 samples from that distribution
that provide our best estimate of what the distribution looks like.

The mean lifetime of 10 bulbs is also a random variable; it varies
depending on the specific random sample of 10 bulbs taken from produc-



Resampling Stats in MATLAB 5

tion. The researcher wants to find out something about this distribution
of the mean. Ideally, given 6 months to do the work, the researcher
would sample more bulbs from the production line. But, being unable
to do this, the researcher can resample from the data she has already
collected:

z = starttally;
for trials = 1:1000

b = sample(10, data);
mn = mean(b);
tally mn z;

end
hist(z);
percentile(z,[.025 .975])

The result is that the 95% confidence interval for the mean ranges from
about 1770 hours to about 2840. (If you run this example, you will find
that the exact values will vary a bit from one run to the next since the
resampling is done at random. More details on this are given in Sec. ??.)
The researcher writes up another memo to marketing: “The lifetime of
any one bulb is random, but our best information is that the mean of 10
bulbs selected randomly from our production line will be between 1770
and 2840 hours, 95% of the time.” The marketing department puts 2500
on the package.

The resampling method can be used to compute the confidence in-
terval of many different types of statistics. The general term used for
this type of calculation is bootstrapping. With the advent of bootstrap-
ping and computers, it has become possible, and even easy, to compute
confidence intervals on all sorts of statistics, even ones that you make up
for a particular purpose. Historically, statistics and statistics textbooks
have emphasized certain statistics, such as the mean or proportion, for
which there are algebraic formulas for computing confidence intervals.
The two examples just presented could easily be handled by these his-
torically conventional techniques. Since we are now freed from the com-
putational restrictions that have favored the choice of such statistics, one
can expect to see increasing diversity in the use of types of descriptive
statistics. Below we present three simple examples involving some simple
descriptive statistics: the minimum, the median, the total distance. A
fourth example shows how confidence intervals can be computed when
more than one type of measurement is involved and you’re interested in
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the relationship between the measurements.

Example 3: Confidence in the extreme

Several months after the release of its new package, the light bulb
company receives many complaints from consumers that its bulbs last
only a few hours rather than the 2500 promised. They are sued by a
man who broke his collar bone when replacing a light bulb above his
stairway; he was so angry to be replacing a bulb that burned out on
its first night of use that he fell off his ladder. The company decides to
repackage. Rather than reporting the typical lifetime of a single bulb,
they will report the total lifetime of all the bulbs in the 4-bulb package.
Since this is a random number, they will help consumers by giving a value
that is 99% guaranteed to be exceeded by the bulbs in the package. The
following commands are in file bulblife.m:

z = starttally;
for trials = 1:5000 % See the caution below

b = sample(4, data);
totallife = sum(b);
tally totallife z;

end
percentile(z,.01)

We execute the commands in the script
� bulblife ⇒ ans: 4475

Only in 1% of the cases is the total lifetime less than 4475 hours.
The lightbulb company sets the 99% guarantee level at 4500 hours and
marks the package:

“The total lifetime of these 4 bulbs will be about 9000
hours but will vary from package to package. There is only
a one-percent chance that the bulbs in this package will have
a total lifetime of less than 4500 hours; if this happens you
get your money back.”
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This example differs from many of the others in that we are interested in
the 1% percentile rather than 2.5% or 5%. It is harder to make reliable
estimates for smaller percentiles. In Section ?? it is suggested that while
1000 trials is adequate for a 2.5%, it isn’t adequate for a 1% percentile
where 5000 trials should be used. Even so, as we look at more extreme
percentiles, the estimates become less reliable. (See [?] for an analysis of
this situation, and a way to correct the estimates.)

@@ ��
�� @@P��PPq

caution!

The bulb packaging conclusion is based on only 10 data points. One of
these points, 7, is quite different from the others. The data suggest that
about 10% of bulbs have very short lifetimes. The data, however, are not
inconsistent with the possibility that an even larger proportion, say 20%,
have very short lifetimes. If this were the case — we don’t know for sure
whether it is or isn’t — our conclusion would be flawed: rather than only
one percent of packages having a total bulb lifetime of less than 4500
hours, approximately 3% of packages would fail to satify the guarantee.
This might eat up all the company’s profits. The issue here is whether 10
data points is enough to give us a reliable idea of what is the distribution
of bulb lifetimes. See Section ?? for a discussion of how to detect when
there is too little data.

@
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caution!

Example 4: Housing prices: Confidence in the Median

A magazine is preparing it’s annual report on “The 10 Best Cities
in America.” One of the criteria for inclusion in the list is the cost of
housing. The report’s author estimates the cost of housing by going
through the records in the city courthouse and tabulating the price of
each house sold in the last month. All such sales are recorded, whether
the house sold for $50,000 or for $5,000,000. In the magazine article
they could present the average sales price of a house. This would be
misleading to most of their readers who would never think of buying a
house that costs $5,000,000. The magazine decides to report the median
house price.

The magazine reporter collects the following prices for Cleveland,
Ohio in July 1998. (The prices are in $1000’s.)
� prices=[110 63 78 137 490 82 97 119 852 105 110 134 212 98];
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For the sake of comparison, we compute the 95% confidence intervals for
both the mean and median:

Ntrials=1000;
Ndata = length(prices);
mn = starttally; % tally of the mean

md = starttally; % tally of the median

for trials = 1:Ntrials
samp = sample(Ndata, prices);
a = mean(samp);
tally a mn;
a = median(samp);
tally a md;

end
disp(’95% conf. interval on mean:’);
percentile(mn, [.025, .975]);
disp(’95% conf. interval on median:’);
percentile(md, [.025, .975]);

The resulting confidence interval on the median is 97 to 137. For the
mean, the confidence interval is much larger: 102 to 316.

Example 5: Confidence in the Distance

You are involved in planning emergency services for a rural district
in northern Minnesota. There is one long road that runs through the
district and you are trying to evaluate a plan to build an emergency
medicine clinic at a particular site on the road. One criterion in build-
ing the clinic is to provide fast access to emergency services. You will
measure this by looking at the median distance from the clinic to the
patients. You have information about where on the road people live
but, since many of the emergencies arise from hunting, snowmobiling
and farming accidents, you decide to use data collected over the past
year about the place where each emergency patient originated: where
the accident occurred, or where the patient fell ill. For simplicity, we’ll
look at a small part of the data, which gives the location of origin of the
patient measured according to the mile-markers on the district road.
� location = [78 145 132 94 67 44 93 78 120 34 78 53 119 95];
The new clinic is to be located at mile 117. For example, the accident
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victim at mile 93 would need to travel abs(93-117) miles to get to the
clinic. (abs is the absolute value function; it makes a negative number
positive. For instance abs(-7) gives 7.) The median distance from the
accidents to the planned clinic is
� median( abs( location - 117 ) ) ⇒ ans: 33.5

A real-estate developer, with land to sell at mile 75, points out that the
median distance to his land is shorter
� median( abs( location - 75 ) ) ⇒ ans: 21

This is a situation where it is helpful to know confidence intervals.
The 95% confidence intervals on the median distance can be computed
using bootstrapping, as in the file clinic.m:

z = starttally;
for trial = 1:1000

a = median( abs( location - 117 ) );
score a z;

end
percentile(a,[.025, .975])

We run the commands
� clinic

ans: 22 50

The resulting confidence interval is surprisingly wide: 22 to 50 miles.
This information about the uncertainty in our estimate can be useful.
By repeating the above analysis for hypothetical locations at places other
than mile 117, one can see that the exact location of the clinic doesn’t
affect things much: the clinic could be located just about anywhere be-
tween miles 60 to 120.

Example 6: Confidence in Correlations:

Storks and Babies

We are interested in the possibility that storks deliver babies. We
have some data on the population of storks and the yearly number of
human births (in millions) from Germany.2

years = [1965 1971 1974 1977 1978 1979 1980];
storks = [1920 1700 1090 990 1030 995 930];
babies = [1.04 0.78 0.62 0.58 0.57 0.58 0.62];

2These data were published in [?].
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When we graph storks and babies versus years we see that both pop-
ulations are decreasing. Another way to look at the situation is to plot
babies versus storks. We see (Fig. ??) that when storks are up, so
are babies. When storks are down, the number of births falls.

One way to quantify the association between storks and babies is
through the r2 statistic. When r2 = 1, the association is perfect. When
r2 = 0, no association is detected. In our case, we will compute r2 for a
linear model: do the data in Fig. ??(right panel) lie on a straight line?
The closer r2 is to 1, the closer the data lie to a straight line. If r2 equals
1, the data are exactly on a straight line. If r2 equals zero, a line doesn’t
describe the data at all. (It is also possible to compute r2 for other sorts
of models. See, e.g., regress.)

Figure 1:
The population of storks and the number of
babies born per year in West Germany.

In MATLAB, r2 is easy to compute for the straight line model
� rsq = corr(storks, babies).ˆ2

ans: 0.8921

We now want to compute the confidence intervals of this estimate
of r2. We can do this with resampling. Keep in mind, though, that r2

is calculated from two data sets. When we resample the data, we do
not want to pick a number at random from babies and to pick another
number completely at random from storks. Instead, we want to pick
a year at random and sample both the babies and storks that year: to
make a paired sample. (In Example ?? we’ll see a situation where we do
want to pick the babies and stork samples independently.)

In MATLAB, we can select a value from a data set by indexing. For
example, to reference the 5th value from babies, we use the command
babies(5). To implement the resampling of the 7 data points we will
resample the numbers 1 to 7 and use these as indices to sample the data
themselves. Here is an except from the file storksbabies.m:

Ndata = length(years); % how many data points are there?

z = starttally;
for trials = 1:1000 % Do 1000 trials

inds = sample( Ndata, 1:Ndata );
stks = storks(inds);
babs = babies(inds);
r = corr(stks, babs);
rsq = r.*r;
tally rsq z;
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end
histogram(z);
disp(’The 95 percent confidence interval is:’);
[percentile(z,.025), percentile(z,.975)]

Run the script:
� storksbabies

The 95 percent confidence interval is:

0.041 0.998

We see that the 95% confidence interval is quite broad, reaching from
0.041 to 0.998, and does come close to zero. But there is more to the
story than just this. Although most of the resamples have r2 close to
1, a few are close to 0. If you modify the program to print out yrs for
those resamples where r2 is close to zero, you will discover that they
are ones where 1965 and 1971 have been omitted.3 There is definitely
an association between storks and babies in this data, but it depends
strongly on just a few of the data points. In those resamples where the
1965 and 1971 data are omitted, the perceived association disappears.

The above estimation of the confidence interval of r2 makes an im-
portant assumption: the pairs are independent of one another. This
assumption is important because if it is violated the results of the re-
sampling computation do not reflect the real confidence interval. It is
hard in this example to know whether this assumption is justified.

To illustrate the consequences of violating the assumption of indepen-
dence, we will make up some data where we know independence doesn’t
hold. Imagine that we sent out 2 teams in each of the years to measure
births and the stork population. If these teams are accurate, they will get
about the same data as each other. The two data points in any one year
— one from each team — are obviously not independent. If we wrongly
assume that they are independent and compute the confidence interval
through resampling, we will get a very narrow confidence interval: 0.813
to 0.9803.4

3To see this for yourself, modify the program to add the following lines just after
rsq = r.*r,

if rsq < .1

years(inds)

end

This will print out the years for those cases where the correlation is weak.
4You can check this out by making new data sets, as in babies = concat(babies,

babies); and likewise for storks and years.
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The assumption of independent samples can often be justified when
data are collected from randomly selected cases. For example, in study-
ing the relationship between height and weight in people, you might
pick people at random and measure their heights and weights. Although
height and weight will presumably be correlated, the weights of the sub-
jects are independent from one subject to the next as are their heights.

The babies and storks data were not selected randomly: measure-
ments were made sequentially. This renders the assumption of indepen-
dent samples suspect.

See the documentation for regression for an example of how to find
the best fitting line relating storks and babies.

@@ ��
�� @@P��PPq

caution!

Those readers with a passing familiarity with the biology of reproduction
may protest that there is good theoretical reason to deny the existence
of a relationship between the stork population and the arrival of babies.
But “relationship” is not the same thing as “correlation.” The finding of a
correlation between the size of the stork population and human births does
not imply a causal relationship. Correlation and association are the rightful
objects of statistical analysis of data. Whether a detected correlation or
association can be interpreted as a causal relationship depends on the
context in which the data were collected. Generally, it is necessary to
carry out an experimental intervention in order to reach conclusions about
causality. Effective design of experiments involves a control group and
random assignment of cases to be in the control or experimental group.
None of this exists in the stork and baby data.

In the preceeding examples, we have assessed the extent of sampling
variability by mimicking the process of sampling. We resample from
our data to reproduce the sorts of sampling variability that come from
sampling in the real world. The implicit assumption is that the real
world is quite like our data.

Another perspective is this: our data are a random sample of the
world and they may not precisely reflect the world. We ask, how much
different might the world be from our data while still giving us a reason-
able likelihood that our data are really a random sample of the world?
This approach is closely related to hypothesis testing, which is covered
in Chapter ??. Below, we give a simple example of how resampling can
be used for this approach to confidence intervals.



Resampling Stats in MATLAB 13

Example 7: How Safe is the Space Shuttle?

The space shuttle Challenger flew 24 missions without a serious ac-
cident. It was deemed safe enough that an elementary-school teacher,
Christa McAuliffe, was sent on the 25th mission. In a tragic accident,
televised live to millions of school children, the shuttle exploded, killing
all on board.

Put yourself in the place of a mission planner trying to decide how
safe is the shuttle. You have data from the first 24 missions in order to
plan for the 25th. Writing a safe trip as 0 and a disaster as 1, the data are:
� flights = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
Since there were no accidents, the accident rate is 0. We can try to put
confidence intervals on this by resampling, but all of the resamples will
consist only of 0s and so the resampled accident rate will always be ze-
ros. Common sense tells us that the fact that there has never been an
accident doesn’t mean that there never will be one. How can we give a
meaningful confidence interval to the accident rate?

One way to look at the confidence interval is to ask, “What range of
accident rates are consistent with the observed data?” Clearly the lowest
possible accident rate is 0 and this is consistent with the data. On the
high side, the situation requires some analysis. If the “true” accident
rate were 50%, it seems quite unlikely that we would sample a string of
24 consecutive flights without an accident. (This is the same probability
as flipping a coin 24 times and never getting tails: 1

8192 . Possible, but
not at all likely.) But what if the accident rate were 5%?

We can solve this problem using a simulation. We will hypothesize
an accident rate and use a simulation to compute many sequences of 24
flights. Some of these sequences will have no accidents, and are therefore
match the observed data. If the fraction of no-accident sequences in
the simulation is more than 5% of the total number of sequences, we
will declare that the hypothesized accident rate is consistent with the
observed data.

We’ll try out a number of hypothetical accident rates, and use the
largest and smallest rates consistent to set the upper and lower bounds
of the accident rate’s 95% confidence interval. But, since the lowest
possible accident rate is zero, and since this is obviously consistent with
the observation of no accidents, half of our work is already done and we
need only compute the upper bound of the confidence interval.

Since we will be carrying out the same computation for many different
accident rates, this is a natural application for an m-file function that
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takes the true accident rate as an argument. (See Step ?? of the tutorial
in Appendix ??.) Actually, to make the program even more general, we
will give as arguments the number of flights, and the number of accidents.
This will allow you to use exactly the same program to set confidence
intervals for any observed proportion.

The following listing is the program shuttle.m. The first line of the
file instructs MATLAB that shuttle is a function that takes three ar-
guments (hypothrate, nflights, and naccidents). Looking at the last
line of the file, we see that the returned result of the function, held in the
variable res, is a vector of two numbers: the first gives the probability of
seeing the observed number of accidents or lower given the hypothetical
true rate, the second is the probability of seeing the observed number of
accidents or greater.

function res = shuttle(hypothrate, nflights, naccidents)
% shuttle(hypothrate, nflights, naccidents)

% compute the probability that <naccidents>

% or fewer

% will be seen in <nflights> flights if the

% hypothesized accident rate is <hypothrate>

% Returns two numbers:

% -- the probability of seeing naccidents or fewer

% -- the probability of seeing naccidents or greater.

data = [(1-hypothrate) 0; hypothrate 1];
z = starttally;
for trials = 1:5000

% simulate nflights

s = sample(nflights, data);
% count how many crashes

crash = count(s==1);
tally crash z;

end
res = [proportion(z<=naccidents); proportion(z>=naccidents)]

Let’s try a hypothetical accident rate of 5%.
� shuttle(0.05) ⇒ ans: 0.286 1.0

The first number in the answer indicates that there is a likelihood of al-
most 30% that we would see no accidents in 24 flights if the underlying
accident rate were 5%. The second number indicates what we already
know: the probability of seeing no accidents or more is 100%. So, the 5%
hypothetical rate is quite consistent with observing no accidents. Let’s
try a higher rate:



Resampling Stats in MATLAB 15

� shuttle(0.10) ⇒ ans: 0.079 1.0

Now the likelihood of our data is 7.9%, just a little greater than 5%. Our
data are consistent with this hypothetical rate of 10%, but just barely.

By experimenting with different accident rates, we can find the high-
est rate consistent with the data. We find, in this case, that an accident
rate of 0.12 is consistent with the data at a level of 5% and we there-
fore can take the 95% confidence interval on the shuttle’s pre-Challenger
accident rate to be 0 to 0.12.

To illustrate a more general use of this technique to find confidence
intervals on a proportion, where we need to find both the upper and
lower bounds of the confidence interval, let’s find the confidence interval
on the accident rate when one accident is observed out of 40 flights. This
gives an observed accident rate of 1

40 = .025, so we’ll start by looking at
hypothetical rates higher than this to set the upper bound of the confi-
dence interval.
� shuttle(.05, 40, 1) ⇒ ans: 0.4310 0.8820

There’s a 43% likelihood of seeing 1 accident or fewer in 40 flights if the
hypothetical accident rate is 0.05. So, we’ll try a higher hypothetical
rate.
� shuttle(.10, 40, 1) ⇒ ans: 0.085 0.982

Not quite there...
� shuttle(.11, 40, 1) ⇒ ans: 0.054 0.990

Still higher ...
� shuttle(.12, 40, 1) ⇒ ans: 0.034 0.994

Too high. So we’ll take the upper bound on the confidence interval to
be an accident rate of 0.11. This may be surprising: the upper bound
of the confidence in interval is smaller for 1 accident in 40 flights than it
was for 0 accidents in 25 flights.

Now to look for the lower bound on the confidence interval. The
strategy is similar to what we have been doing, but now we try a hy-
pothetical accident rate lower than that observed, and lower it until the
calculated probability is 5% of observing 1 accident or greater. We’ll
start with a hypothetical accident rate of 1%.
� shuttle(.01, 40, 1) ⇒ ans: 0.9366 0.3356

The likelihood of seeing 1 accident or more in 40 flights is 33%. Try an
even lower rate:
� shuttle(.001, 40, 1) ⇒ ans: 0.9990 0.0326

This is a bit too low. Back up a bit:
� shuttle(.002, 40, 1) ⇒ ans: 0.9970 0.0748

So, the lower bound on the confidence interval is somewhere between
0.001 and 0.002. We’ll estimate it to be half way between, at about
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0.0015.
In summary, the confidence interval we found for the accident rate

when we observe 1 crash out of 40 flights is 0.0015 to 0.11. Since we
computed 5% likelihoods at each end of the confidence interval, this is a
90% confidence interval.

You may legitimately question whether the seeming precision of the
number 0.0015 is justified. The question of how precise are the answers
produced by resampling is addressed in Section ??.

In Example ?? we examine another way of looking at the plausible
range of accident rates, and how our knowledge of the shuttle’s accident
rate changes as each flight brings in new evidence.


