
Resampling Stats in MATLAB 1

This document is an excerpt from
Resampling Stats in MATLAB

Daniel T. Kaplan
Copyright (c) 1999 by Daniel T. Kaplan, All Rights Reserved
This document differs from the published book in pagi-
nation and in the omission (unintentional, but unavoid-
able for technical reasons) of figures and cross-references
from the book. It is provided as a courtesy to those
who wish to examine the book, but not intended as a re-
placement for the published book, which is available from

Resampling Stats, Inc.
www.resample.com

703-522-2713

Appendix: Tutorial Introduction to MATLAB

This appendix provides a brief introduction to MATLAB for the com-
plete novice. By following the steps in this tutorial you will learn all
that you need to know to start at the beginning of the book using the
Resampling Stats functions. You do not need to know anything at all
about MATLAB to follow this tutorial. (For a more extensive intro-
duction to the various capabilities of MATLAB that go beyond Resam-
pling Stats, see Reference [?] or one of the on-line tutorials available at
http://www.mathworks.com.)

Following this tutorial will be most effective if you do so with a
computer. In the following, the � sign indicates something that you
should type into the machine. After you press enter, the computer
will print a response. We haven’t shown that response here in order to
encourage you to type in the commands yourself. Typing in the examples
not only will help you to remember the various commands in MATLAB,
but also serves as a self-checking exercise: before typing a command
write down what you think the answer will be, and compare this to the
answer that the computer gives. Remember that the computer is by
definition correct: if the computer’s answer differs from your own, it
is either because you have not completely understood the command or
because you typed in the command incorrectly.

Step 1: Starting MATLAB

Exactly how you do this depends on how your computer is set up. On
Windows machines, MATLAB will generally be found in the Start/Programs
menu. On UNIX computers, you may simply need to type matlab at

2 Resampling Stats in MATLAB

the shell prompt. In either case, after starting MATLAB you should be
looking at the “MATLAB Command Window” which will prompt you
with�. If MATLAB hasn’t been installed on your computer, follow the
instructions that come with MATLAB to carry out the installation.

Step 2: Create a variable and assign it a value

MATLAB deals primarily with numbers and collections of numbers
called “vectors” and “matrices.” If you have written a computer program
before, you are familiar with the concepts of variables and values. A
variable is a container that holds a value. In MATLAB, the value is
typically a number or a vector or matrix of numbers. Each variable
has a name, such as var1 or diastolic or data. There are four things
you do with variables: create them, assign them a value, changed the
assigned value, and use the value that has already been assigned.

The following command creates a variable named a and assigns it the
value 7. To execute the command, type the command at the prompt (�)
and press Enter. (You do not have to type the prompt: the computer
produces this for you.)
� a = 7

ans: a = 7

Variables can be named just about anything you like, with the following
restrictions: there should be no spaces in the name; the name should
start with a letter; only letters and numbers and the underscore (_).
Thus, adog and a dog are valid names, but a dog is not, nor is a-dog.

Some names are reserved by MATLAB for “keywords,” and you may
not use them for variable names. Examples of keywords are for, while,
end, function, and return. These are part of the language itself. If you
use a key word as a variable name, you will get an error message from
MATLAB.

Other names have already been given a meaning as functions in MAT-
LAB such as sum, count, min and so on. It is best to avoid using such
names since doing so will mask their original meaning. With experience,
you will learn what names are legitimate and what aren’t. For beginners,
you may want to stick to simple names like a, x, y, z, y2, etc.

You can see a list of the variables you have defined by giving the
command
� who

Using Variables 3

Step 3: Using a variable that you have already
defined

To see what is the value of a variable, just type its name at the com-
mand prompt, e.g.
� a
To use the value of a variable in a calculation, just type the name of the
variable where ever you would like the value to appear. For instance,
� a+a
adds a to itself.

Arithmetic operations follow the conventional notation. Try the fol-
lowing
� a = 2
� b = 3

� c = (a+b)^2
Note that ^2 means exponentiation to the power 2.
� d = (a-b)/(a+b)

After each assignment, MATLAB prints out the value of the variable.
This can sometimes be irritating. You can use a semi-colon at the end
of a line in order to suppress this printing. Try:
� e = 2*a + 7*b;

You should take note of the fact that the = symbol does not really
mean “equals.” Instead it means that the variable named on the left side
of = should be assigned the value specified on the right side of =. For
instance, consider the command
� a = a+1
This often perplexes first-time programmers. Obviously there is no num-
ber that is equal to itself plus 1, and so at first glance the command is
imposing an impossible condition. But actually the command means
something very straightforward: take the current value of a and add 1
to it. This new value should be assigned to a. The overall effect is to
increase the value of a by 1.

You can make a copy of the value of a variable by creating a new
variable and assigning it the value you want to copy. For example
� b = a;
The two variables a and b have independent identities. Changing the
value of a (after the copy to b is performed) will not change the value of
b. Try the sequence of commands:

4 Resampling Stats in MATLAB

� a = 10
� b = a
� a = 7
� b

Step 4: Use a Function

A function (sometimes called a procedure or routine) performs an
operation. MATLAB has many built-in functions that perform a wide
range of operations. The way to tell MATLAB to carry out a particular
operation is to give the name of that operation as a command. For ex-
ample,
� who
tells MATLAB to print a list of the variables you have created to the
screen.
� sin(a)
tells MATLAB to take the sine of the value of a. The sin function takes
one argument, the number that you want to take the sine of. Functions
can take zero, one, or more arguments. For example
� rand(3,2)
produces a matrix of random numbers arranged in 3 rows and 2 columns.

Whenever a function takes arguments, those arguments are enclosed
in a pair of parentheses. If there more than one argument, they are
separated by commas, and the order of the arguments is usually
extremely important.

You can find out what a function does, and what its arguments mean
by giving the command
� help NameOfFunction

Try
� help resamp

In most cases, the result of using a function is a value. For example,
the value of sqrt(25) is 5. You can use this value in the same way you
would use any other value. For example:
� a = cos(a)
or
� a = 3.5*cos(a*b) + sin(sqrt(a))

In a very few cases in MATLAB, you give a command without using
parentheses around the arguments. We have seen an example of this
with help, for instance

Making Vectors 5

� help help

We will encounter another instance of this unusual situation in Resam-
pling Stats with the function tally.

Step 5: Make a Vector

MATLAB deals with collections of numbers called vectors and ma-
trices. A vector is simply a list of numbers. A matrix is a rectangular
array of numbers. There are many ways to make a vector; one of the
most useful is to make a sequence using the colon (:) sequencing oper-
ator. Try the following commands:
� a = 1:10;
� b = 5:10;
The second of these commands translates into English as “b is assigned
to be the numbers 5 to 10.” You will mostly use the sequencing operator
in this way, to make integers (whole numbers). However, the sequencing
operator can also handle nonintegers:
� c=5.5:10.5
or even arithmetic operations
� c=(sqrt(7)):(3+2)
In both of these cases the size of the step in the sequence is 1. You can
set the step size yourself if you want it to be different from 1:
� c=9:0.5:11.2
which translates as “assign c to be the sequence from 9 to 11.2, stepping
by 0.5. Note that 11.2 is not in the sequence since you can’t get to 11.2
by taking steps of size 0.5 starting from 9.

Another way to make a vector, which we use extensively in Resam-
pling Stats, is to use the collection brackets, [] . For instance:
� c = [4 7 3 2 1];

You can use variables in the collection brackets. Try
� c = [c 10*c]
� [c 1:10]

Collection brackets can also be used to make matrices. You don’t
need to know anything about matrices in order to use Resampling Stats,
but you will need to use them from time to time to specify “sampling
urns.”
� mat = [1 2; 3 4; 5 6; 7 8]
Note that the rows of the matrix are separated by the semi-colon (;).
All rows of a matrix must be the same length. The printed form of the
matrix reveals the rectangular structure clearly.

6 Resampling Stats in MATLAB

� mat
mat 1 2

3 4

5 6

7 8

In using Resampling Stats, you will encounter other ways to make
vectors and matrices, such as reading them from files, generating random
numbers, and so on. These will be explained as you need them.

Step 6: Arithmetic with vectors

Arithmetic with vectors in MATLAB is very easy. Try the following:
� c = 1:5
� c+10
� c*5
� c/2
� c-1.1
� sqrt(c)
Note that the assignment operator was used only in the first command;
the other commands use the value of c but they do not change it. If you
want to change it, you need to use the assignment operator, e.g.,
� c = 5+c

The above examples involve operations on a vector and a single num-
ber. In some cases you may want to have operations on two vectors. You
will not need to do this much in Resampling Stats, but you should know
that it is possible.
� c=1:5

� c + c

� c - c
These statements add the corresponding elements of the two vectors to
one another. For this to work, the vectors need to be the same length.
You will get an error message if you try
� b = 1:10
� c+b generates an error
At this point, you are probably thinking that multiplication and division
work the same way. But if you try c*c you will get an error message.
The reason is that MATLAB uses the rules of matrix multiplication and
these rules don’t work with c*c. In order to tell MATLAB that you

Other Vector Operations 7

want to multiply two vectors together in an element-by-element fashion,
you need to say c.*c Similarly, division is c./c

Step 7: Other common operations on vectors

Some operations on vectors give back a single number, or perform
some other operation such as plotting the vector. Try
� d = 1:10
� mean(d) average of the numbers in d
� std(d) standard deviation of the number in d

� median(d)
� plot(d)

� sum(d)
� plot(d, sin(d))

Step 8: Boolean Questions

A Boolean question is one whose answer is either “true” or “false”.
For example
� 7 > 2
is true. In MATLAB, false is represented by 0 and true 1 by 1. You will
be using several logical operations that apply to numbers and that will be
familiar. > < >= <= == ~= Try the following. First, we’ll create short
vector to use in the examples:
� c=0:5 - 2
and now ask boolean questions about it.
� c > 0

� c >= 0
� c <= 1
� c == 1
� c ~= 1 not equals
These statements can be translated into English as questions: e.g. “is
the value greater than 0” and so on. For vectors, the question is asked
for each element in the vector independently. Note that to ask “is the
value equal to 1” one uses the double equal sign ==. This is to distin-
guish the two different operations of assigment (represented by a single
=) and questioning about equality (represented by ==). You, as every
other computer programmer ever born, will make mistakes here: MAT-
LAB will sometimes detect this mistake and will print an error message,

1Actually, true is represented by any non-zero number.

8 Resampling Stats in MATLAB

but this error message may be obscure, such as “Missing operator” or
“A closing right parenthesis is missing.” When you get such an error
message for a line with an equal sign, check carefully whether you want
there to be a single = for assignment or a double equal == for asking
whether two values are numerically equal.

Matlab also has logical operators for “and”, “or” and “not” which
can be written &, |, and ~ respectively. For instance, to ask whether
elements of c are between -1 and 1, we can write
� c >= -1 & c <= 1

Finally, the functions any and all can be used to ask whether any
or all of the elements in a vector satisfy a relationship. For example
� any(c > 1)
asks whether any of the elements in c are greater than 1.
� all(c > 1)
asks whether all of the elements are greater than 1.

Step 9: Loops and Repeating

An important feature of many computer programs is a loop, wherein
the same instructions are repeated many times. The most common sort
of loop in Resampling Stats is the for loop. Type the following lines at
the MATLAB command prompt:

for k=1:10 Press enter

k + 100 ‘" " again

end and again

This will print out the numbers 101 through 110. (If you had typed a
semi-colon ; at the end of the line k + 100, printing would have been
suppressed.)

There are 4 parts to a for loop:

1. The key word for indicating the start of the loop.

2. A statement of the form variable = a list of numbers. In the
above example, this is the statement k=1:10. We’ll call k the
“counting variable.” (Remember, 1:10 is the list of numbers 1 2
3 4 5 6 7 8 9 10.)

3. A set of MATLAB statements, one per line. This is the body of
the loop.

4. The keyword end to signify where the body of the loop ends.

Conditional Expressions 9

A loop works this way: The counting variable (k in the above exam-
ple) is set to the value of the first element in the list. Then, all of the
statements inside the body are executed in order. Then, the counting
variable is set to be the next element of the list, the statements in the
body are evaluated again, and so on until all of the elements in the list
have been used.

Step 10: Conditional Expressions

A conditional expression is an expression that is evaluated only if
a given condition is true. The if keyword can be used to indicate a
conditional expression, for example

if score > 20
wins = wins + 1;

end

In the above, the condition is that the value of score be greater than 20.
If this is true, then the expression wins = wins + 1 will be evaluated;
otherwise no expression is evaluated.

There are more complicated forms of conditional expressions that
involve the keywords else and elseif. Try the following lines:

score = 10;
if score == 0 % Note the double == signs

val = 0;
elseif score < 10

val = 1;
else

val = 2;
end

What is val after these expressions have been evaluated.
Conditional expressions are often contained in loops. For example

scores = [12 8 9 7 16];
for k=scores

if k < 10
val = 0;

else
val = 1;

end
val % print val. Don’t use a semi-colon!

end

10 Resampling Stats in MATLAB

There are two things to note about this example.

• The keyword end appears twice. The first, inner end signifies the
end of the if statment. The second, outer end marks the end of
the loop.

• The if statement involves the counting variable k. Remember, in
the for loop, k will be set successively to each of the values in the
vector scores.

Step 11: Saving Your Work and Quitting

Let’s finish up this session using MATLAB. Before finishing, though,
let’s save the variables we’ve created. Giving the command
� who
prints a list of the variables we’ve created. We will save these vari-
ables for later use. The simplest way to do this is to use the file/save

workspace as command from the menu bar. When you do this, a
file-saving dialog box will be displayed. Give some unique name (for
example, mywork or jan10) to the file to be saved, and save it in an
appropriate directory. (The file will have a .mat file-name extension.)

If you don’t like using the graphical user interface, you could also use
save myfile * on the command-line. save also allows you to save just
selected variables, for example save myfile a b scores.

Now quite MATLAB using the
� quit

command or the file/exit command from the menu bar.
Your system may print out a message like 32987 flops indicating

the number of arithmetic operations carried out by MATLAB during
the session. In your future sessions using Resampling Stats you may
conceivably exceed the number of arithmetic operations carried out by all
humans prior to, say, the year 1500. Welcome to the world of computer-
intensive statistics!

Step 12: Starting a New Session

Welcome back. Startup MATLAB again, and check to make sure that
you have access to the Resampling Stats software by typing the command
� help resamp

If you get the response resamp.m not found, then things are not set up
right and you should follow the instructions for setting your path in Sec.
??.

M-file Scripts 11

Now, check on your old variables.
� who
What? They have disappeared! Of course. MATLAB is oriented around
the idea of sessions. Each time you start MATLAB, you start a new
session. To recall the variables you saved from an old session, you can
give the file/load workspace command from the menu bar, and then
load the workspace file you saved in Step ??. (Or, you could use the cd
and load commands on the MATLAB command line.)

MATLAB will not automatically save the variables from your session when
you quit.

@@ ��
�� @@P��PPq

caution!

Step 13: M-file Scripts

You have already seen how to save variables so that you can use them
in another MATLAB session. You can also save sequences of commands
so that you can re-use the commands. To do this, invoke the “m-file” ed-
itor by using the file/new/m-file menu-bar command or by giving the
� edit
command on the command line.

Inside the editing window type the following lines exactly as they
appear below:

% My first m-file
% Add up the numbers 1 to 10
total = 0;
for k=1:10

total = total + k;
end

Use the file/save command in the editing window to save this file with
name mysum.m. (The editor will automatically add the file-name exten-
sion .m) Save the file in the directory c:/resamp/myfiles or whereever
you installed the Resampling Stats software. (See Section ??.) If you
prefer, use another directory, but make sure that it is in the MATLAB
path as described in Section ??.

You have just created a new MATLAB command mysum. Try it out:
� mysum

12 Resampling Stats in MATLAB

The consequence of giving this command is that all of the instructions
in mysum.m are executed.2 (The % sign indicates that the rest of the line
is a comment, not a command to be executed.) You can check out the
result by asking for the value of total
� total
The value should be 55. Note that before you issued the mysamp com-
mand there was no variable called total; it was created by the instruc-
tions in mysamp.m.

mysamp.m is an example of a script. Creating such scripts saves the
tedium of re-typing often-used commands, but it also has a much more
important role: it allows you to avoid the bugs that can be introduced
by incorrect typing, and allows you to refine, correct, and test your
commands.

Unlike variables, m-files do not need to be loaded into each session.
Instead, whenever a command is given, MATLAB looks in the current
directory for a file with that name (ending in .m). If the file is not found
in that directory, then MATLAB looks through a set of other directories,
the “path,” stopping in the first directory in which the file is found. (See
Sec. ??.)

Sometimes it may happen that you create an m-file command that
has the same name as an existing MATLAB function. When this oc-
curs, only one of the two synonomous commands will be available to
MATLAB. You can avoid this situation by checking before saving a new
m-file, using the command which. For example, if you are thinking of
creating a new command called opensesame, try
� which opensesame

If the response is “opensesame not found,” then it is safe to use the name.

Step 14: M-file Functions

You’ve decided to generalize your mysum command to add up the
integers in any specified range from low to high. A sensible way to
do this is to use a command of the form mysum(low,high). Such a
command is called a “function.” low and high are the arguments to the
function.

To create this function, edit your file mysum.m so that it looks like
this (erasing most of the old contents):

2If MATLAB could not find mysum.m in your path you will get an error message
like ??? Undefined function or variable ’mysum’. If you get this message, go
back and make sure that the file mysum.m was saved in an appropriate directory on
the MATLAB path. See Section ??.

M-file Functions 13

function res = mysum(low,high)
% mysum(low, high)
% adds all the numbers between low and high
total = 0;
for k=low:high

total = total + k;
end
res = total;

Make sure to save the edited version of mysum.m, overwriting the old
version.

Note the following differences between the original mysum.m and the
new version:

• The first word in the file is the keyword function. The rest of
the first line indicates the mysum returns a value called res, and
that it takes two arguments, low and high. When the function
is evaluated with two arguments, for example, mysum(1,100) then
low will automatically be assigned the value of the first argument
(in this case, 1), and high will be assigned the value of the second
argument (10).

• The next lines, starting with comment signs (%) are more than just
comments. Whenever someone types
� help mysum

these lines will be displayed.

• The variable res, identified on the first line as being the value
returned by mysum, is assigned the desired value. In this example,
this is done on the last line.

Try out your new function:
� mysum(1,100)
The returned value should be 5050.

There are two very important things to note about how the function
mysum works, and how it differs from the script you created in Step ?? .

1. No variable called res is created in the session. res in mysum.m is
just a temporary handle to give a name for the result.
� res

ans: ??? No such function or variable ’res’

14 Resampling Stats in MATLAB

2. The variable total inside mysum.m is similarly just a temporary
handle. It does not affect the variables in the session:
� total ⇒ ans: 55

total did not get changed by the mysum command.

The general rule for functions is this: nothing that happens inside
a function changes the value of any variable in the session. The only
way to change a variable in a session is to use the assignment operator
outside of a function. For example,
� total = mysum(1,100)
changes the value of total.

This general rule means that you are perfectly free to use any variable
names inside a function, without having to worry that you might acci-
dentally change a variable in your session. This is an extremely valuable
feature of functions.3

Using functions for often-repeated calculations allows you to save
typing, as was the case with scripts. Importantly, the invisibility of a
function’s internal variables to the session means that you can modify
a function to make it more efficient or to fix a bug, and that any im-
provements are automatically picked up by those commands that use the
function.

@@ ��
�� @@P��PPq

caution!

Remember to use the file/save menu command to save any changes
you make to a function file. Unless you do this, the changes you make will
have no effect.

Step 15: Vectors and Matrices

As already pointed out, a vector is a single row or column of numbers,
a matrix is a rectangular array of numbers. Some examples:

vec1 = [1 2.2 4 5];
vec2 = [10;

9;
8;
7;

3For experts: Every rule has an exceptions, and it actually is possible to write
functions in a special way so that they change variables outside the function — but
this needs to be arranged explicitly and is rarely needed. See tally for an example.

Vectors and Matrices 15

6]
mat = [1 9.3;

0 6.8;
1 4.2;
1 3.9]

Sometimes one needs to access a single element of a vector, or perhaps
several items. This can be done in either of two ways, best illustrated
by example.

1. The index of a vector element tells the position of the element in
the vector. The index of the first element is 1, the second is 2, and
so on. The last element’s index is the same as the length of the
vector. To access one or more elements, put the desired index or
list of indices in parentheses after the vector name:
� vec1(1) ⇒ ans: 1

� vec1([2 3] ⇒ ans: 2.2 4

� vec2([1 3 5]) ⇒ ans: 10

8

6

2. A Boolean vector is a vector created by using a logical operation
with a yes-or-no answer, represented by 1 (for yes) and 0 (for no).
(See Step ??.) You can use a Boolean vector to access members of
a vector; the Boolean vector should be the same length as the vec-
tor being accessed. Whereever there is a 1 in the Boolean vector,
the corresponding element will be accessed.
� vec1 > 2

ans: 0 1 1 1 a Boolean vector
� vec1(vec1 > 2)

ans: 2.2 4 5

� vec2(vec2 = 8)
ans: 10 9 7 6

Indexing also works for assigning values to elements of a vector. For
example.
� vec1(1) = 7
� vec1 ⇒ ans: 7 2.2 4 5

This change to vec1 is permanent, until we change it again.
Indexing of matrices works in much the same way as vectors, but you

need to specify both a row and a column index, separated by a comma.
� mat(3,2) ⇒ ans: 4.2

16 Resampling Stats in MATLAB

A colon (“:”) will take all of the elements
� mat(3,:) ⇒ ans: 1 4.2

� mat(:,1) ⇒ ans: 1 0 1 1

� mat(mat(:,1)==1, :) ⇒ ans: 1.0 9.3

1.0 4.2

1.0 3.9

Finally, sometimes you want to transpose a row vector into a column
vector, or vice versa. The transpose operator does this:
� a = transpose(vec1)

ans: 7 2.2 4 5

� b = transpose(vec2)
ans: 10 9 8 7 6

� c = transpose(mat)
ans: 1 0 1 1

9.3 6.8 4.2 3.9

